生物技术通报 ›› 2020, Vol. 36 ›› Issue (8): 79-68.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1218

• 研究报告 • 上一篇    下一篇

微生物碳酸酐酶诱导CaCO3沉淀的影响因素及生成机理

袁亮   

  1. 商丘职业技术学院,商丘 476000
  • 收稿日期:2019-12-13 出版日期:2020-08-26 发布日期:2020-08-27
  • 作者简介:袁亮,男,硕士,讲师,研究方向:生物技术微生物应用;E-mail:1325861515@qq.com

Influencing Factors and Formation Mechanism of CaCO3 Precipitation Induced by Microbial Carbonic Anhydrase

YUAN Liang   

  1. Shangqiu Polytechnic,Shangqiu 476000
  • Received:2019-12-13 Published:2020-08-26 Online:2020-08-27

摘要: 微生物碳酸酐酶能够加速CO2的水合反应,对于研究全球碳循环具有重要的意义。选用一种产生胞外碳酸酐酶的细菌,研究了温度、pH值和Ca2+浓度对细菌生长、碳酸酐酶活性的影响。结果表明,25℃碳酸酐酶的活性最高,有利于CaCO3的沉淀;初始pH值为8.5的偏碱性环境中,CaCO3沉淀质量最多;当Ca2+浓度为50 mmol/L时,细菌的生长繁殖最好,过低的Ca2+浓度会影响CaCO3的生成,而过高的Ca2+浓度则会严重影响细菌的生长,降低细菌的活性。最后研究了微生物碳酸酐酶诱导CaCO3沉淀的机理,碳酸酐酶能够加速CO2水化成HCO3-,在碱性环境中、钙源存在的情况下,与OH-和Ca2+反应生成CaCO3沉淀。

关键词: 微生物, 碳酸酐酶, 酶活性, CaCO3, 机理

Abstract: Microbial carbonic anhydrase can accelerate the CO2 hydration,which is of great significance for the study of global carbon cycle. A bacterium producing extracellular carbonic anhydrase was selected to study the effects of temperature,pH value and Ca2+ concentration on bacterial growth and carbonic anhydrase activity in this article. The results showed that the activity of carbonic anhydrase at 25℃ was the highest,which was beneficial to the CaCO3 precipitation. The precipitation of CaCO3 was the most in the alkaline environment with the initial pH 8.5. When the Ca2+ concentration was 50 mmol/L,the growth and reproduction of the bacterium were the best,too low Ca2+ concentration affected the generation of CaCO3,while too high Ca2+ concentration seriously affected the growth of the bacterium and reduced the activity of the bacterium. Finally,the mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase was studied. Carbonic anhydrase accelerated the hydration of CO2 into HCO3-,and HCO3- reacted with OH-and Ca2+ to form CaCO3 precipitation in alkaline environment and in the presence of calcium source.

Key words: microbial, carbonic anhydrase, enzymatic activity, CaCO3, mechanism