生物技术通报 ›› 2018, Vol. 34 ›› Issue (2): 102-111.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0981
王洪洋1, 秦丽娟2, 唐唯1, 田振东3
收稿日期:
2017-11-15
出版日期:
2018-02-26
发布日期:
2018-03-12
作者简介:
王洪洋,男,讲师,博士,研究方向:马铃薯与致病疫霉互作;E-mail:hongyang8318@126.com
基金资助:
WANG Hong-yang1, QIN Li-juan2, TANG Wei1, TIAN Zhen-dong3
Received:
2017-11-15
Published:
2018-02-26
Online:
2018-03-12
摘要: 由致病疫霉(Phytophthora infestans(Mont.)de Bary)引起的晚疫病是马铃薯生产中最具毁灭性的病害。为了成功入侵和在寄主植物中繁衍,致病疫霉会向寄主细胞分泌一类RXLR效应蛋白以干扰植物免疫系统。自2005年克隆第一个晚疫病菌RXLR类无毒基因AVR3a以来,国内外学者从RXLR效应蛋白的结构、功能,以及与寄主靶标作用机理等多个方面展开了大量研究。随着高通量测序技术与效应子组学技术的发展,RXLR效应蛋白抑制植物免疫分子机制也取得了显著进展。RXLR效应蛋白的研究有助于揭示致病疫霉与马铃薯互作分子机制,并进一步为马铃薯抗病育种工作提供新思路。主要概述了致病疫霉RXLR效应蛋白的相关研究进展,重点介绍了致病疫霉AVR基因的克隆、定位、变异及功能等方面的最新进展,同时对未来值得关注的研究方向进行了探讨。
王洪洋, 秦丽娟, 唐唯, 田振东. 致病疫霉RXLR效应蛋白相关研究进展[J]. 生物技术通报, 2018, 34(2): 102-111.
WANG Hong-yang, QIN Li-juan, TANG Wei, TIAN Zhen-dong. Research Advances on Phytophthora infestans RXLR Effector Proteins[J]. Biotechnology Bulletin, 2018, 34(2): 102-111.
[1] 谢从华. 马铃薯产业的现状与发展[J]. 华中农业大学学报:社会科学版, 2012, (1):1-4. [2] McLellan H, Boevink PC, Armstrong MR, et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus[J]. PLoS Pathog, 2013, 9(10):e1003670. [3] King SR, McLellan H, Boevink PC, et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling[J]. Plant Cell, 2014, 26(3):1345-1359. [4] Zheng X, McLellan H, Fraiture M, et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathog, 10(4):e1004057. [5] Yang L, McLellan H, Naqvi S, et al. Potato NPH3/RPT2-Like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor[J]. Plant Physiol, 2016, 171(1):645-657. [6] Boevink PC, Wang X, McLellan H, et al. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease[J]. Nat Commun, 2016, 7:10311. [7] Hein I, Gilroy EM, Armstrong MR, et al.The zig-zag-zig in oomycete-plant interactions[J]. Mol Plant Pathol, 2009, 10(4):547-562. [8] Franceschetti M, Maqbool A, Jimenez-Dalmaroni MJ, et al.Effectors of filamentous plant pathogens:commonalities amid diversity[J]. Microbiol Mol Biol Rev, 2017, 81(2):e00066-16. [9] Petre B, Kamoun S.How do filamentous pathogens deliver effector proteins into Plant Cells?[J]. PLoS Biol, 2014, 12(2):e1001801. [10] Vleeshouwers VG, Raffaele S, Vossen JH, et al.Understanding and exploiting late blight resistance in the age of effectors[J]. Annu Rev Phytopathol, 2011, 49:507-531. [11] Birch PR, Boevink PC, Gilroy EM, et al.Oomycete RXLR effectors:delivery, functional redundancy and durable disease resistance[J]. Curr Opin Plant Biol, 2008, 11(4):373-379. [12] Haas BJ, Kamoun S, Zody MC, et al.Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans[J]. Nature, 2009, 461(7262):393-398. [13] Raffaele S, Win J, Cano LM, et al.Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans[J]. BMC genomics, 2010, 11:637. [14] Cooke DE, Cano LM, Raffaele S, et al.Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen[J]. PLoS Pathog, 2012, 8(10):e1002940. [15] Segonzac C, Feike D, Gimenez-Ibanez S, et al.Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana[J]. Plant Physiol, 2011, 156(2):687-699. [16] Dagdas YF, Belhaj K, Maqbool A, et al.An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor[J]. Elife, 2016, 5:e10856. [17] Wang H, Ren Y, Zhou J, et al.The cell death triggered by the nuclear localized RxLR effector PITG_22798 from Phytophthora infestans is suppressed by the effector AVR3b[J]. Int J Mol Sci, 2017, 18(2):E409. [18] Boevink PC, McLellan H, Gilroy EM, et al. Oomycetes seek help from the plant:Phytophthora infestans effectors target host susceptibility factors[J]. Mol Plant, 2016, 9(5):636-638. [19] Sun K, Wolters AM, Loonen AE, et al.Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew[J]. Transgenic Res, 2016, 25(2):123-138. [20] Sun K, Wolters AM, Vossen JH, et al.Silencing of six susceptibility genes results in potato late blight resistance[J]. Transgenic Res, 2016, 25(5):731-742. [21] Wang X, Boevink P, McLellan H, et al. A Host KH RNA-binding protein is a susceptibility factor targeted by an RXLR effector to promote late blight disease[J]. Mol Plant, 2015, 8(9):1385-1395. [22] Flor H.Current status of the gene-for-gene concept[J]. Annu Rev Phytopathol, 1971, 9:275-296. [23] Du Y, Berg J, Govers F, et al.Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1[J]. New Phytol, 2015, 207(3):735-747. [24] Saunders DG, Breen S, Win J, et al.Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance[J]. Plant Cell, 2012, 24(8):3420-3434. [25] Armstrong MR, Whisson SC, Pritchard L, et al.An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm[J]. Proc Natl Academy of Sciences, 2005, 102(21):7766-7771. [26] Li G, Huang S, Guo X, et al.Cloning and characterization of R3b;members of the r3 superfamily of late blight resistance genes show sequence and functional divergence[J]. Mol Plant Microbe Interact, 2011, 24(10):1132-1142. [27] van Poppel PM, Guo J, van de Vondervoort PJ, et al. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector[J]. Mol Plant Microbe Interact, 2008, 21(11):1460-1470. [28] Vleeshouwers VG, Rietman H, Krenek P, et al.Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes[J]. PLoS One, 2008, 3(8):e2875. [29] Oh SK, Young C, Lee M, et al.In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2[J]. Plant Cell, 2009, 21(9):2928-2947. [30] Pel M.Mapping, isolation and characterization of genes responsible for late blight resistance in potato[D]. Wageningen:Wageningen University, 2010. [31] Rietman H, Bijsterbosch G, Cano LM, et al.Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors[J]. Mol Plant Microbe Interact, 2012, 25(7):910-919. [32] Vossen JH, van Arkel G, Bergervoet M, et al. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties[J]. Theor Appl Genet, 2016, 129(9):1785-1796. [33] Bos JI, Armstrong MR, Gilroy EM, et al.Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1[J]. Proc Natl Academy of Sciences, 2010, 107(21):9909-9914. [34] Chaparro-Garcia A, Schwizer S, Sklenar J, et al.Phytophthora infestans RXLR-WY effector AVR3a associates with Dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2[J]. PLoS One, 2015, 10(9):e0137071. [35] Engelhardt S, Boevink PC, Armstrong MR, et al.Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response[J]. Plant Cell, 2012, 24(12):5142-5158. [36] Gilroy EM, Taylor RM, Hein I, et al.CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a[J]. New Phytol, 2011, 190(3):653-666. [37] Du Y, Mpina MH, Birch PR, et al.Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity[J]. Plant Physiol, 2015, 169(3):1975-1990. [38] Bozkurt TO, Schornack S, Win J, et al.Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface[J]. Proc Natl Academy of Sci, 2011, 108(51):20832-20837. [39] Whisson SC, Boevink PC, Wang S, et al.The cell biology of late blight disease[J]. Curr Opin Microbiol, 2016, 34:127-135. [40] Oh SK, Kwon SY, Choi D.Rpi-blb2-mediated hypersensitive cell death caused by Phytophthora infestans AVRblb2 requires SGT1, but not EDS1, NDR1, salicylic acid-, jasmonic Acid-, or ethylene-mediated signaling[J]. Plant Pathol J, 2014, 30(3):254-260. [41] Turnbull D, Yang L, Naqvi S, et al.RXLR effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity[J]. Plant Physiol, 2017, 174(1):356-369. [42] VAN Poppel PM, Jiang RH, Sliwka J, et al.Recognition of Phytophthora infestans Avr4 by potato R4 is triggered by C-terminal domains comprising W motifs[J]. Mol Plant Pathol, 2009, 10(5):611-620. [43] Chen Y, Liu Z, Halterman DA.Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O[J]. PLoS Pathog, 2012, 8(3):e1002595. [44] Bouwmeester K, de Sain M, Weide R, et al. The lectin receptor kinase LecRK-I. 9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector[J]. PLoS Pathog, 2011, 7(3):e1001327. [45] Stefańczyk E, Sobkowiak S, Brylinska M, et al.Expression of the potato late blight resistance gene Rpi-phu1 and Phytophthora infestans effectors in the compatible and incompatible interactions in potato[J]. Phytopathology, 2017, 107(6):740-748. [46] Lee HA, Kim SY, Oh SK, et al.Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans[J]. New Phytol, 2014, 203(3):926-938. [47] 董冉. 马铃薯晚疫病菌四个RxLR基因的功能鉴定[D]. 泰安:山东农业大学, 2016. [48] Guo J.Phytophthora infestans avirulence genes;mapping, cloning and diversity in field isolates[D]. Wageningen, The Netherlands:Wageningen University, 2008. [49] Lokossou AA, Park TH, van Arkel G, et al. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV[J]. Mol Plant Microbe Interact, 2009, 22(6):630-641. [50] Lenman M, Ali A, Muhlenbock P, et al.Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015[J]. Theor Appl Genet, 2016, 129(1):105-115. [51] 姜华, 余欢, 王艳丽, 等. 稻瘟病菌无毒基因序列变异研究进展[J]. 浙江农业学报, 2015, 27(3):512-520. [52] Pais M, Yoshida K, Giannakopoulou A, et al.Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen[J]. BioRxiv, 2017, 116012. [53] Gilroy EM, Breen S, Whisson SC, et al.Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants[J]. New Phytol, 2011, 191(3):763-776. [54] Champouret N, Bouwmeester K, Rietman H, et al.Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato[J]. Mol Plant Microbe Interact, 2009, 22(12):1535-1545. [55] Yoshida K, Schuenemann VJ, Cano LM, et al.The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine[J]. Elife, 2013, 2:e00731. [56] Halterman DA, Chen Y, Sopee J, et al.Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance[J]. PLoS One, 2010, 5(5):e10536. [57] Oliva RF, Cano LM, Raffaele S, et al.A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence[J]. Mol Plant Microbe Interact, 2015, 28(8):901-912. [58] Qutob D, Tedman-Jones J, Dong S, et al.Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4(4):e5066. [59] Bos JI, Kanneganti TD, Young C, et al.The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana[J]. Plant J, 2006, 48(2):165-176. [60] Birch PR, Armstrong M, Bos J, et al.Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans[J]. J Exp Bot, 2009, 60(4):1133-1140. [61] Kale SD, Gu B, Capelluto DG, et al.External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells[J]. Cell, 2010, 142(2):284-295. [62] Wawra S, Agacan M, Boddey JA, et al.Avirulence protein 3a(AVR3a)from the potato pathogen Phytophthora infestans forms homodimers through its predicted translocation region and does not specifically bind phospholipids[J]. J Biol Chem, 2012, 287(45):38101-38109. [63] Na R, Yu D, Qutob D, et al.Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d[J]. Mol Plant Microbe Interact, 2013, 26(8):969-976. [64] Wawra S, Trusch F, Matena A, et al.The RxLR Motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion[J]. Plant Cell, 2017, 29(6):1184-1195. [65] Ve T, Williams SJ, Catanzariti AM, et al.Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity[J]. Proc Natl Academy of Sci, 2013, 110(43):17594-17599. [66] Wang S, Boevink PC, Welsh L, et al.Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways[J]. New Phytol, 2017, 216(1):205-215. [67] Dou D, Kale SD, Wang X, et al.RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery[J]. Plant Cell, 2008, 20(7):1930-1947. [68] Vleeshouwers VG, Oliver RP.Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens[J]. Mol Plant Microbe Interact, 2014, 27(3):196-206. |
[1] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[2] | 谢海娟, 范希德, 叶广继, 周云, 王舰, 杨永智. 马铃薯St4CL的克隆及表达分析[J]. 生物技术通报, 2019, 35(11): 1-8. |
[3] | 雷朝霞, 刘晶, 白易平, 唐唯, 王洪洋. 马铃薯泛素结合酶基因StUBC17的克隆与功能分析[J]. 生物技术通报, 2019, 35(1): 35-41. |
[4] | 王伟伟, 肖燕, 张艺夕, 刘晶, 唐唯, 李灿辉. 马铃薯晚疫病菌原生质体制备及再生体系的研究[J]. 生物技术通报, 2018, 34(4): 77-82. |
[5] | 肖欢欢,辛翠花,丁艳,朱佳莉,郭江波. 马铃薯晚疫病防治的转基因策略[J]. 生物技术通报, 2014, 0(1): 15-18. |
[6] | 郑建坡;曲占良;张洪伟;李继刚;. 马铃薯非共生血红蛋白基因StHb1的克隆及表达[J]. , 2012, 0(02): 75-79. |
[7] | 孙庚;靳春鹏;陈婷婷;刘金亮;任金平;刘晓梅;张世宏;潘洪玉;. 稻瘟菌无毒基因的分子检测及其指纹类型分析[J]. , 2011, 0(06): 122-126. |
[8] | 李本金;黄灿强;陈昌盛;兰成忠;陈庆河;翁启勇;. 晚疫病菌基因组SSR扩增产物两种检测方法的比较与改进[J]. , 2010, 0(11): 171-176. |
[9] | 周军会;宋扬;张永强;. 马铃薯晚疫病抗病基因研究进展[J]. , 2008, 0(05): 13-17. |
[10] | 范亚丽;刘春林;阮颖;邓荟芬;李进;. 马铃薯抗病基因工程研究[J]. , 2007, 0(03): 39-43. |
[11] | 王文娟;张飞云;. 植物抗病分子机制研究进展[J]. , 2007, 0(01): 19-23. |
[12] | . 国外动态[J]. , 2005, 0(03): 10-17. |
[13] | 何晨阳;王金生. 植物抗病基因的克隆策略[J]. , 1994, 0(04): 1-5. |
[14] | 张震元;. 用组织培养法育成的抗病性植物[J]. , 1989, 0(02): 14-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||