生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 123-130.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1266
刘珍银1(), 段郅臻1, 彭婷2, 王童欣1(), 王健1()
收稿日期:
2022-10-06
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
王童欣,博士,研究方向:植物资源与利用;E-mail: jennifer_wang@hainanu.edu.cn;作者简介:
刘珍银,女,研究方向:林学遗传育种;E-mail: 20196705310033@hainanu.edu.cn
基金资助:
LIU Zhen-yin1(), DUAN Zhi-zhen1, PENG Ting2, WANG Tong-xin1(), WANG Jian1()
Received:
2022-10-06
Published:
2023-07-26
Online:
2023-08-17
摘要:
三角梅是紫茉莉科灌木,具有较高的观赏价值,是研究花色叶色调控的理想材料。建立快速高效的基因验证体系,是三角梅基因功能研究的关键。以三角梅‘金心双色’品种为材料,选用八氢番茄红素脱氢酶基因(PDS)为指示基因,探索不同接种部位和基因片段长度对烟草脆裂病毒(TRV)诱导三角梅叶片内源PDS mRNA沉默效果的影响,建立适用于三角梅的病毒诱导基因沉默体系(VIGS)。结果表明,摩擦注射嫩叶法相比顶端嫩茎沉默效果更明显;基因沉默片段长度在336 bp和457 bp均可诱导PDS基因沉默,后者效果更加明显。初步构建了三角梅VIGS体系,为后续基因功能研究提供了技术参考。
刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130.
LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’[J]. Biotechnology Bulletin, 2023, 39(7): 123-130.
引物 Primer | 引物序列 Primer sequence(5'-3') | 长度 Length/bp |
---|---|---|
BpPDS336-EcoRI-F | TAAGGTTACCGAATTCTGCATTTTGATTGCTTTG | 368 |
BpPDS336-EcoRI-R | GCCTTCTAGAGAATTCAATGACTGGAACCCCTACTA | |
BpPDS457-EcoRI-F | TAAGGTTACCGAATTCGGTTTGAGTGTCCAAGAGTG | 489 |
BpPDS457-EcoRI-R | GCCTTCTAGAGAATTCTAATGACTGGAACCCCTACT | |
pTRV1-F | CCTGGTGCTCAGTACATAACTTTCC | 257 |
pTRV1-R | TCTTTGCTTACATCGTCCTCTTTCA | |
pTRV2-F | ACGCTGTTTGAGGGAAAAGTAG | 321 |
pTRV2-R | CCGATCAATCAAGATCAGTCGAGA | |
BpActin-RT-F | TATGAACTTCCTGATGGG | 125 |
BpActin-RT-R | GAATTGTAGGTTGTCTCG | |
BpPDS-RT-F | ATTCGCCTCGTCCTGATA | 103 |
BpPDS-RT-R | ATGGGTTTGTGACCTGCA |
表1 本文中使用的引物序列
Table 1 Primers used in this study
引物 Primer | 引物序列 Primer sequence(5'-3') | 长度 Length/bp |
---|---|---|
BpPDS336-EcoRI-F | TAAGGTTACCGAATTCTGCATTTTGATTGCTTTG | 368 |
BpPDS336-EcoRI-R | GCCTTCTAGAGAATTCAATGACTGGAACCCCTACTA | |
BpPDS457-EcoRI-F | TAAGGTTACCGAATTCGGTTTGAGTGTCCAAGAGTG | 489 |
BpPDS457-EcoRI-R | GCCTTCTAGAGAATTCTAATGACTGGAACCCCTACT | |
pTRV1-F | CCTGGTGCTCAGTACATAACTTTCC | 257 |
pTRV1-R | TCTTTGCTTACATCGTCCTCTTTCA | |
pTRV2-F | ACGCTGTTTGAGGGAAAAGTAG | 321 |
pTRV2-R | CCGATCAATCAAGATCAGTCGAGA | |
BpActin-RT-F | TATGAACTTCCTGATGGG | 125 |
BpActin-RT-R | GAATTGTAGGTTGTCTCG | |
BpPDS-RT-F | ATTCGCCTCGTCCTGATA | 103 |
BpPDS-RT-R | ATGGGTTTGTGACCTGCA |
图4 沉默三角梅BpPDS叶片表型 A:空白对照;B:阴性对照;C, D:pTRV2-BpPDS336沉默处理;E, F:pTRV2-BpPDS457沉默处理。圆圈部位代表侵染部位
Fig. 4 Phenotype of BpPDS silenced B. peruviana ‘Thimma’ A: Control check; B: negative control; C, D: pTRV2-BpPDS336 silencing treatment; E, F: pTRV2-BpPDS457 silencing treatment. The circle indicates infection treatment part
图5 pTRV1和pTRV2病毒载体PCR检测 pTRV1引物检测:1、3、5、7、9、11、13、15、17;pTRV2引物检测:2、4、6、8、10、12、14、16、18
Fig. 5 PCR amplification of virus veetor pTRV1 and pTRV2 pTRV1 detection: 1, 3, 5, 7, 9, 11, 13, 15 and 17; pTRV2 detection: 2, 4, 6, 8, 10, 12, 14, 16 and 18
处理 Treatment | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 叶绿素含量 Chlorophyll content/(mg·g-1) | 类胡萝卜素含量 Carotenoid content/(mg·g-1) |
---|---|---|---|---|
空白对照 | 0.327 ± 0.021 a | 0.214 ± 0.030 a | 0.541 ± 0.052 a | 0.114 ± 0.004 a |
阴性对照 | 0.300 ± 0.007 a | 0.153 ± 0.010 b | 0.470 ± 0.025 a | 0.114 ± 0.010 a |
pTRV2-BpPDS336 | 0.230 ± 0.023 b | 0.090 ± 0.010 c | 0.310 ± 0.060 b | 0.087 ± 0.003 b |
pTRV2-BpPDS457 | 0.190 ± 0.016 c | 0.053 ± 0.010 d | 0.260 ± 0.035 b | 0.086 ± 0.020 b |
表2 不同处理三角梅叶片光合色素含量
Table 2 Content of photosynthetic pigments in the leaves of B. peruviana ‘Thimma’ under different treatments
处理 Treatment | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 叶绿素含量 Chlorophyll content/(mg·g-1) | 类胡萝卜素含量 Carotenoid content/(mg·g-1) |
---|---|---|---|---|
空白对照 | 0.327 ± 0.021 a | 0.214 ± 0.030 a | 0.541 ± 0.052 a | 0.114 ± 0.004 a |
阴性对照 | 0.300 ± 0.007 a | 0.153 ± 0.010 b | 0.470 ± 0.025 a | 0.114 ± 0.010 a |
pTRV2-BpPDS336 | 0.230 ± 0.023 b | 0.090 ± 0.010 c | 0.310 ± 0.060 b | 0.087 ± 0.003 b |
pTRV2-BpPDS457 | 0.190 ± 0.016 c | 0.053 ± 0.010 d | 0.260 ± 0.035 b | 0.086 ± 0.020 b |
图6 RT-qPCR检测BpPDS基因相对表达量 *表示在(P<0.05)水平上有显著差异;ns代表无显著差异
Fig. 6 RT-qPCR detection of relative expression of BpPDS * indicates significant difference(P<0.05), ns indicates no significance
[1] | 武晓燕, 唐源江. 三角梅属植物种质资源及其园林应用研究进展[J]. 南方农业: 园林花卉版, 2010, 4(5): 40-43. |
Wu XY, Tang YJ. Research advances in the germplasm resources and their applications of landscape architecture and horticulture of Bougainvillea[J]. South China Agric, 2010, 4(5): 40-43. | |
[2] | 段郅臻, 王童欣, 王健. VIGS技术在观赏植物花色研究上的应用[J]. 分子植物育种, 2021, 19(24): 8170-8178. |
Duan ZZ, Wang TX, Wang J. Applications of virus-induced gene silencing(VIGS)technology in flower color research of ornamental plants[J]. Mol Plant Breed, 2021, 19(24): 8170-8178. | |
[3] | 张婧. 病毒诱导的石竹PDS基因沉默体系建立及优化[D]. 呼和浩特: 内蒙古农业大学, 2016. |
Zhang J. Establishment and optization of VIGS system with PDS gene in Dianthus chinensis L.[D]. Hohhot: Inner Mongolia Agricultural University, 2016. | |
[4] |
郝梦媛, 杭琦, 师恭曜. VIGS基因沉默技术在作物基因功能研究中的应用与展望[J]. 中国农业科技导报, 2022, 24(1): 1-13.
doi: 10.13304/j.nykjdb.2020.0781 |
Hao MY, Hang Q, Shi GY. Application and prospect of virus-induced gene silencing in crop gene function research[J]. J Agric Sci Technol, 2022, 24(1): 1-13. | |
[5] |
Yan HJ, Shi SC, Ma N, et al. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers[J]. J Integr Plant Biol, 2018, 60(1): 34-44.
doi: 10.1111/jipb.12599 |
[6] | 陈峥. ‘华龙非洲菊’VIGS体系的建立及其在基因功能分析上的应用[D]. 广州: 华南农业大学, 2017. |
Chen Z. Establishment of virus-induced gene silencing(VIGS)in Gerbera jamesonii ‘Hualong’ and its application in gene functional analysis[D]. Guangzhou: South China Agricultural University, 2017. | |
[7] | 韩嘉宁, 邵慧慧, 胡增辉, 等. 金鱼草AmPDS基因克隆及调节类胡萝卜素合成功能分析[J]. 西北植物学报, 2020, 40(2): 193-201. |
Han JN, Shao HH, Hu ZH, et al. Cloning of AmPDS gene in snapdragon and analysis of its function to regulate carotenoid synthesis[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(2): 193-201. | |
[8] | 刘和平. 矮牵牛PhACC1、PhACC2和PhAAE13在花青素合成中的作用研究[D]. 广州: 华南农业大学, 2016. |
Liu HP. Functional analysis of PhACC1, PhACC2 and PhAAE13 during the anthocyanin biosynthesis in the Petunia[D]. Guangzhou: South China Agricultural University, 2016. | |
[9] |
舒庆艳, 朱瑾, 门思琦, 等. 基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系[J]. 园艺学报, 2018, 45(1): 168-176.
doi: 10.16420/j.issn.0513-353x.2017-0522 |
Shu QY, Zhu J, Men SQ, et al. Establishing virus induced gene silencing(VIGS)system in tree peony using PsUFGT genes[J]. Acta Hortic Sin, 2018, 45(1): 168-176. | |
[10] |
Zhou P, Peng JY, Zeng MJ, et al. Virus-induced gene silencing(VIGS)in Chinese narcissus and its use in functional analysis of NtMYB3[J]. Hortic Plant J, 2021, 7(6): 565-572.
doi: 10.1016/j.hpj.2021.04.009 URL |
[11] |
Deng XB, Elomaa P, Nguyen CX, et al. Virus-induced gene silencing for Asteraceae-a reverse genetics approach for functional genomics in Gerbera hybrida[J]. Plant Biotechnol J, 2012, 10(8): 970-978.
doi: 10.1111/pbi.2012.10.issue-8 URL |
[12] | 张花美, 朱胜男, 张丽莎, 等. 病毒诱导的基因沉默[J]. 杭州师范大学学报: 自然科学版, 2011, 10(2): 158-162. |
Zhang HM, Zhu SN, Zhang LS, et al. Virus-induced gene silencing[J]. J Hangzhou Norm Univ Nat Sci Ed, 2011, 10(2): 158-162. | |
[13] | 李瑞雪, 王钰婷, 胡飞, 等. 桑树PDS基因VIGS转化体系的构建与鉴定[J]. 南方农业学报, 2018, 49(7): 1432-1438. |
Li RX, Wang YT, Hu F, et al. VIGS transformation system construction and identification of gene PDS in mulberry[J]. J South Agric, 2018, 49(7): 1432-1438. | |
[14] | 李慧芳, 桂敏, 张萍萍, 等. 辣椒上TRV介导的番茄斑萎病毒N基因沉默体系构建及鉴定[J]. 云南农业大学学报: 自然科学, 2021, 36(3): 409-416. |
Li HF, Gui M, Zhang PP, et al. Establishment and identification of TRV-mediated tomato spotted wilt orthotospovirus N gene silencing system in pepper[J]. J Yunnan Agric Univ Nat Sci, 2021, 36(3): 409-416. | |
[15] | 徐华. 百合VIGS体系的建立及LhDTX35基因的克隆和功能研究[D]. 北京: 中国农业科学院, 2018. |
Xu H. Establishment of VIGS system and cloning and functional analysis of LhDTX35 gene in Lilium spp[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[16] | 孙蓉, 刘姗, 高静雷, 等. 三角梅CHS基因的克隆及表达分析[J]. 西北农业学报, 2021, 30(10): 1565-1572. |
Sun R, Liu S, Gao JL, et al. Cloning and expression analysis of CHS gene from Bougainvillea spectabilis[J]. Acta Agric Boreali Occidentalis Sin, 2021, 30(10): 1565-1572. | |
[17] |
Sui XM, Zhao MY, Xu ZD, et al. RrGT2, A key gene associated with anthocyanin biosynthesis in Rosa rugosa, was identified via virus-induced gene silencing and overexpression[J]. Int J Mol Sci, 2018, 19(12): 4057.
doi: 10.3390/ijms19124057 URL |
[18] | 台德强. 观赏海棠VIGS体系的建立及McMYB10、McMYB16基因的功能分析[D]. 太谷: 山西农业大学, 2015. |
Tai DQ. Establishment of VIGS protocol and functional analysis of McMYB10, McMYB16 in Malus crabapple[D]. Taigu: Shanxi Agricultural University, 2015. | |
[19] |
Hiriart JB, Lehto K, Tyystjärvi E, et al. Suppression of a key gene involved in chlorophyll biosynthesis by means of virus-inducing gene silencing[J]. Plant Mol Biol, 2002, 50(2): 213-224.
doi: 10.1023/A:1016000627231 URL |
[20] | 张洪义. 万寿菊(Tagetes erecta)VIGS体系的建立与优化[D]. 武汉: 华中农业大学, 2015. |
Zhang HY. The establishment and optimization of Tagetes erecta VIGS system[D]. Wuhan: Huazhong Agricultural University, 2015. | |
[21] |
Hiriart JB, Aro EM, Lehto K. Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of the tobacco mosaic virus vector[J]. Mol Plant Microbe Interact, 2003, 16(2): 99-106.
doi: 10.1094/MPMI.2003.16.2.99 URL |
[22] |
Liu EW, Page JE. Optimized cDNA libraries for virus-induced gene silencing(VIGS)using tobacco rattle virus[J]. Plant Methods, 2008, 4: 5.
doi: 10.1186/1746-4811-4-5 URL |
[23] |
Lu HC, Chen HH, Tsai WC, et al. Strategies for functional validation of genes involved in reproductive stages of orchids[J]. Plant Physiol, 2007, 143(2): 558-569.
doi: 10.1104/pp.106.092742 URL |
[24] | Xu H, Xu LF, Yang PP, et al. Tobacco rattle virus-induced PHYTOENE DESATURASE(PDS)and Mg-chelatase H subunit(ChlH)gene silencing in Solanum pseudocapsicum L[J]. PeerJ, 2018, 6: e4424. |
[25] |
Shrawat AK, Lörz H. Agrobacterium -mediated transformation of cereals: a promising approach crossing barriers[J]. Plant Biotechnol J, 2006, 4(6): 575-603.
pmid: 17309731 |
[26] | 李瑞雪. 红苞凤梨VIGS基因沉默体系的建立及POR基因的克隆与功能验证[D]. 雅安: 四川农业大学, 2018. |
Li RX. Screening, cloning and functional identification of POR gene in the albino of Ananas comosus Var. BLeaves using VIGS technique[D]. Ya'an: Sichuan Agricultural University, 2018. | |
[27] |
Burch-Smith TM, Anderson JC, Martin GB, et al. Applications and advantages of virus-induced gene silencing for gene function studies in plants[J]. Plant J, 2004, 39(5): 734-746.
doi: 10.1111/j.1365-313X.2004.02158.x pmid: 15315635 |
[28] |
Scofield SR, Huang L, Brandt AS, et al. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway[J]. Plant Physiol, 2005, 138(4): 2165-2173.
doi: 10.1104/pp.105.061861 pmid: 16024691 |
[29] | 化占勇. 百合查尔酮合成酶(CHS)基因对花色调控影响的研究[D]. 杨凌: 西北农林科技大学, 2010. |
Hua ZY. Research on regulation and effects of CHS gene from lily on pigmentation of flowers[D]. Yangling: Northwest A & F University, 2010. | |
[30] |
Zhou J, Hunter DA, Lewis DH, et al. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy[J]. Plant Cell Rep, 2018, 37(9): 1311-1323.
doi: 10.1007/s00299-018-2314-5 pmid: 29922849 |
[31] |
Liu YL, Sun W, Zeng SH, et al. Virus-induced gene silencing in two novel functional plants, Lycium barbarum L. and Lycium ruthenicum Murr[J]. Sci Hortic, 2014, 170: 267-274.
doi: 10.1016/j.scienta.2014.03.023 URL |
[1] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[2] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[3] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[4] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
[5] | 孙蓉, 刘姗, 高静雷. 三角梅黄烷酮3-羟化酶基因的克隆及表达分析[J]. 生物技术通报, 2022, 38(11): 122-128. |
[6] | 高鹏飞, 席飞虎, 张泽宇, 胡凯强, 陈凯, 魏文桃, 丁家治, 顾连峰. 植物VIGS技术及其在林业科学中的研究进展[J]. 生物技术通报, 2021, 37(5): 141-153. |
[7] | 雷朝霞, 刘晶, 白易平, 唐唯, 王洪洋. 马铃薯泛素结合酶基因StUBC17的克隆与功能分析[J]. 生物技术通报, 2019, 35(1): 35-41. |
[8] | 苏子敬, 李巧玲, 黄程, 谢成建, 杨星勇. RNAi技术及其在真菌基因功能研究中的应用[J]. 生物技术通报, 2015, 31(8): 50-58. |
[9] | 孙威,许奕,许桂莺,孙佩光,宋顺,常胜合. 病毒诱导的基因沉默及其在植物研究中的应用[J]. 生物技术通报, 2015, 31(10): 105-110. |
[10] | 张献贺, 孔稳稳, 李勇, 李晶. 人工miRNA沉默基因的研究[J]. 生物技术通报, 2014, 0(4): 50-56. |
[11] | 曹腾威,谷凌云,黄和,高振,郦明芳. 哺乳动物中RNA干扰沉默基因表达的研究进展[J]. 生物技术通报, 2014, 0(11): 24-31. |
[12] | 张召军,王晓彬,王慧,刘林,张心阁,何秀霞. 中国番茄黄化曲叶病毒利用根吸收法诱导基因沉默(VIGS)的初步研究[J]. 生物技术通报, 2014, 0(1): 143-146. |
[13] | 吴雪,袁金铎,赵楠楠,杨桂文,安利国. 涡虫的基因沉默作用[J]. 生物技术通报, 2013, 0(3): 24-29. |
[14] | 王婷婷,王丹丹,Rahman Laibi Chelab,康丹,游腾飞,眭安平,杨星勇. RNA干扰及其在植物研究中的应用[J]. 生物技术通报, 2013, 0(3): 48-52. |
[15] | 于定群, 汤浩茹, 张勇, 陈清, 张晓楠, 余昊唯. RNA干扰及其在果树上的应用[J]. 生物技术通报, 2012, 0(12): 57-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||