生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 294-307.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0586
冯路遥1,2(), 赵江源3, 施竹凤2, 莫艳芳2,4, 杨童雨2,4, 申云鑫2,4, 何飞飞1, 李铭刚3, 杨佩文2()
收稿日期:
2023-06-20
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
杨佩文,男,博士,研究员,研究方向:植物病害生物防治;E-mail: peiwenyang@yaas.org.cn作者简介:
冯路遥,女,硕士研究生,研究方向:微生物资源的开发与利用;E-mail: huan2004212@163.com
基金资助:
FENG Lu-yao1,2(), ZHAO Jiang-yuan3, SHI Zhu-feng2, MO Yan-fang2,4, YANG Tong-yu2,4, SHEN Yun-xin2,4, HE Fei-fei1, LI Ming-gang3, YANG Pei-wen2()
Received:
2023-06-20
Published:
2024-01-26
Online:
2024-02-06
摘要:
【目的】从无量山国家级自然保护区森林根际土壤发掘具有多种生物活性的功能菌株,探究其开发应用潜力。【方法】采集无量山地区25个区域植物的根际土壤,采用选择培养基,分离鉴定磷酸盐溶解、固氮、溶锌和拮抗等活性菌株,进一步测定菌株分泌铁载体、ACC脱氨酶和吲哚乙酸等生物活性,并验证促番茄种子发芽和生长效果。【结果】分离鉴定得到解磷菌70株,固氮菌27株,解钾菌8株,拮抗镰刀菌的菌株51株。其中,YIM B08401和YIM B08402形态学结合生理生化特性和16S rDNA序列测序,鉴定为白色伯克霍尔德氏菌(Burkholderia alba)和青岛假单胞菌(Pseudomonas qingdaonensis),两个菌株均具有磷酸盐溶解、固氮、溶锌和分泌铁载体的活性,最大可溶性磷含量为(455.63±59.65)mg/L和(878.95±64.78)mg/L;两株菌的促种子发芽试验结果接近,施加稀释10倍、102倍和103倍的发酵上清液后,发芽率都维持在82%-93%,明显高于对照组的56%和49%,施加菌株发酵液的处理组相较于空白对照组的长度都有显著增加。盆栽实验证明,两株菌株促生效果最明显的处理组在地上部长度、鲜重、干重、茎粗、根长、根鲜重、根干重方面的数据都显著优于对照组,YIM B08401的上述指标相对于对照组分别显著增加了89%、495%、268%、62%、53%、385%和469%,YIM B08402的上述指标相对于对照组分别显著增加了118%、528%、477%、55%、37%、413%和747%。此外,菌株YIM B08401还具有拮抗病原菌和分泌ACC脱氨酶活性,YIM B08402则还具有分泌吲哚乙酸的活性。【结论】无量山森林根际土壤蕴含具有多种生物活性的功能菌株,白色伯克霍尔德氏菌(B. alba, YIM B08401)和青岛假单胞菌(P. qingdaonensis, YIM B08402)具备开发为新型微生物肥料的应用潜力。
冯路遥, 赵江源, 施竹凤, 莫艳芳, 杨童雨, 申云鑫, 何飞飞, 李铭刚, 杨佩文. 森林根际土壤细菌的分离、鉴定及生物活性筛选[J]. 生物技术通报, 2024, 40(1): 294-307.
FENG Lu-yao, ZHAO Jiang-yuan, SHI Zhu-feng, MO Yan-fang, YANG Tong-yu, SHEN Yun-xin, HE Fei-fei, LI Ming-gang, YANG Pei-wen. Isolation and Identification of Bacteria in Forest Rhizosphere Soil and Their Biological Activity Screening[J]. Biotechnology Bulletin, 2024, 40(1): 294-307.
图1 无量山根际土壤可培养微生物门水平(A)和属水平(B)分布特征
Fig. 1 Distribution characteristics of cultivable microbial phylum level(A)and genus level(B)of Wuliangshan mountain rhizosphere soil
图2 无量山根际土壤中32属代表菌株基于16S rDNA基因构建的邻接法系统发育树
Fig. 2 Phylogenetic tree of 32 genera representative strains in the Wuliangshan rhizosphere soil, constructed by neighbor-joining tree based on 16S rDNA gene
菌株 Strain | 种属名 Top-hit taxon | 溶磷 Phosphorus solution | 固氮 Nitrogen fixation | 解钾 Potassium solution | 拮抗镰刀菌 Antagonistic fusarium |
---|---|---|---|---|---|
YIM B08401 | B. alba | + | + | - | + |
YIM B08402 | P. qingdaonensis | + | + | - | - |
82-a15 | P. costantinii | + | + | - | - |
61-b2 | P. juntendi | + | + | - | - |
66-3 | P. jessenii | + | + | - | - |
60-a4 | B. altitudinis | + | - | - | - |
62-a15 | P. peoriae | + | - | - | - |
66-a4 | P. costantinii | + | + | - | - |
82-a5 | P. granadensis | + | + | - | - |
66-a3 | P. costantini | + | + | - | - |
60-a14 | B. cereus | + | - | - | - |
60-a6 | B. cereus | + | + | - | - |
84-a4 | P. monteilii | + | + | - | - |
60-a1 | P. aryabhattai | + | + | + | - |
66-a9 | B. amyloliquefaciens | + | - | - | + |
74-4 | P. borealis | + | - | - | + |
82-a14 | B. siamensis | + | - | - | + |
82-a16 | B. siamensis | + | - | - | + |
83-a6 | P. umsongensis | - | + | - | - |
84-a16 | B. subtilis | - | - | - | + |
表1 部分活性菌株促生特性
Table 1 Growth-promoting and disease-resistant properties of some active strains
菌株 Strain | 种属名 Top-hit taxon | 溶磷 Phosphorus solution | 固氮 Nitrogen fixation | 解钾 Potassium solution | 拮抗镰刀菌 Antagonistic fusarium |
---|---|---|---|---|---|
YIM B08401 | B. alba | + | + | - | + |
YIM B08402 | P. qingdaonensis | + | + | - | - |
82-a15 | P. costantinii | + | + | - | - |
61-b2 | P. juntendi | + | + | - | - |
66-3 | P. jessenii | + | + | - | - |
60-a4 | B. altitudinis | + | - | - | - |
62-a15 | P. peoriae | + | - | - | - |
66-a4 | P. costantinii | + | + | - | - |
82-a5 | P. granadensis | + | + | - | - |
66-a3 | P. costantini | + | + | - | - |
60-a14 | B. cereus | + | - | - | - |
60-a6 | B. cereus | + | + | - | - |
84-a4 | P. monteilii | + | + | - | - |
60-a1 | P. aryabhattai | + | + | + | - |
66-a9 | B. amyloliquefaciens | + | - | - | + |
74-4 | P. borealis | + | - | - | + |
82-a14 | B. siamensis | + | - | - | + |
82-a16 | B. siamensis | + | - | - | + |
83-a6 | P. umsongensis | - | + | - | - |
84-a16 | B. subtilis | - | - | - | + |
图3 菌株YIM B08401(A)和菌株YIM B08402(B)基于16S rDNA基因构建的邻接法系统发育树
Fig. 3 Neighbor-joining trees of the strain YIM B08401(A)and YIM B08402(B)based on 16S rDNA gene
图4 菌株YIM B08401的溶磷(A)、解磷(B)、固氮(C)、溶锌(D)和YIM B08402的溶磷(E)、解磷(F)、固氮(G)、溶锌(H)效果图
Fig. 4 Effect diagram of dissolved phosphorus(A), phosphorus solution(B), nitrogen fixation(C), zinc dissolution(D)of YIM B08401 and phosphorus dissolution(E), phosphorus solution(F), nitrogen fixation(G), and zinc dissolution(H)of YIM B08402
D/d | 溶磷指数Phosphorus dissolution | 解磷指数Phosphorus solution | 固氮指数Nitrogen fixation | 溶锌指数Zinc dissolution |
---|---|---|---|---|
YIM B08401 | 1.207±0.01b | 2.731±0.442a | 4.519±0.403a | 2.41±0.216a |
YIM B08402 | 2.316±0.159a | 2.730±0.423a | 2.595±0.884b | 2.71±0.375a |
表2 菌株的营养转化指数
Table 2 Nutrient transformation indexes of the strain
D/d | 溶磷指数Phosphorus dissolution | 解磷指数Phosphorus solution | 固氮指数Nitrogen fixation | 溶锌指数Zinc dissolution |
---|---|---|---|---|
YIM B08401 | 1.207±0.01b | 2.731±0.442a | 4.519±0.403a | 2.41±0.216a |
YIM B08402 | 2.316±0.159a | 2.730±0.423a | 2.595±0.884b | 2.71±0.375a |
图5 菌株YIM B08401(A)和YIM B08402(B)发酵液可溶性磷含量及pH变化
Fig. 5 Soluble phosphorus content and pH in the fermentation broth of the strain YIM B08401(A)and YIM B08402(B)
图7 菌株YIM B08402的分泌生长素活性测定 左侧为空白对照,右侧为菌株YIM B08402的显色结果
Fig. 7 Determination of IAA activity of strain YIM B08402 On the left it is a blank control, and on the right it is the color rendering result of strain YIM B08402
图9 菌株YIM B08401对烟草疫霉(A)、茎点霉(B)、木贼镰刀菌(C)的拮抗效果
Fig. 9 Antagonistic effects of strain YIM B08401 against Phytophthora parasitica var. nicotianae(A), Phoma matteuciicola(B)and Fusarium equiseti(C)
图11 菌株YIM B08401(A、B)和YIM B08402(C、D)的各处理番茄种子发芽长度和发芽率
Fig. 11 Germination lengths and germination rates of tomato seeds of strain YIM B08401(A, B)and YIM B08402(C, D)
图13 菌株YIM B08401和YIM B08402各处理对番茄植株地上部鲜重(A)、地上部干重(B)、地上部长度(C)、根鲜重(D)、根干重(E)、根长(F)、茎粗(G)的影响
Fig. 13 Effects on the fresh weight of above ground part(A), dry weight of above ground part(B), length of above ground part(C), fresh weight of root(D), dry weight of root(E), root length(F), stem diameter(G)of tomato plants under each treatment of strain YIM B08401 and YIM B08402
处理 Treatment | CK1 | CK2 | YIM B08401 | YIM B08402 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||
pH | 7.22±0.03 c | 7.1±0.01 e | 7.16±0.02 d | 7.42±0.02 b | 7.49±0.02 a | 7.38±0.04 b | 7.16±0.05 d | 7.43±0.03 b | ||
有机质Organic matter/(g·kg) | 169.22±0.09 b | 183.51±1.14 a | 93.54±0.92 f | 99.01±0.15 e | 100.9±0.33 d | 90.92±0.15 g | 121.02±0.07 c | 120.94±0.14 c | ||
全氮 Total nitrogen/g·kg) | 4.19±0.01 b | 4.28±0.01 a | 3.37±0.01 f | 3.34±0.01 g | 3.42±0.02 e | 3.37±0.01 f | 3.77±0 d | 3.89±0.01 c | ||
全磷Total phosphorus/(g·kg) | 2.19±0.02 e | 2.29±0.03 cd | 2.34±0.04 c | 2.41±0.02 b | 2.26±0.02 d | 2.54±0.05 a | 2.45±0.04 b | 2.27±0 d | ||
全钾Total potassium/(g·kg) | 6.22±0.08 f | 6.99±0.11 d | 7.01±0.08 d | 7.83±0.13 a | 7.28±0.08 c | 7.32±0.11 c | 7.58±0.23 b | 6.74±0.03 e | ||
水解性氮Hydrolyzed nitrogen/(mg·kg) | 276.53±2.21 b | 296.33±1.11 a | 245.24±3.32 d | 241.4±0 e | 258.65±0 c | 241.4±3.32 e | 175.62±1.11 f | 238.85±1.11 e | ||
有效磷Available phosphorus/(mg·kg) | 102.17±2.78 a | 97.1±0.61 b | 67.75±1.72 e | 81.86±1 c | 67.75±0.24 e | 71.89±1.87 d | 72.51±1.65 d | 71.37±1.15 d | ||
速效钾Fast-acting potassium/(mg·kg) | 293.41±0.86 g | 400.87±3.19 f | 517.33±9.44 e | 603.08±7.04 b | 619.83±6.68 a | 543.47±12.12 d | 588.95±9.14 c | 612.87±1.83 ab |
表3 番茄根际土壤理化指标
Table 3 Physicochemical indexes in the rhizosphere soil of tomato plants
处理 Treatment | CK1 | CK2 | YIM B08401 | YIM B08402 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||
pH | 7.22±0.03 c | 7.1±0.01 e | 7.16±0.02 d | 7.42±0.02 b | 7.49±0.02 a | 7.38±0.04 b | 7.16±0.05 d | 7.43±0.03 b | ||
有机质Organic matter/(g·kg) | 169.22±0.09 b | 183.51±1.14 a | 93.54±0.92 f | 99.01±0.15 e | 100.9±0.33 d | 90.92±0.15 g | 121.02±0.07 c | 120.94±0.14 c | ||
全氮 Total nitrogen/g·kg) | 4.19±0.01 b | 4.28±0.01 a | 3.37±0.01 f | 3.34±0.01 g | 3.42±0.02 e | 3.37±0.01 f | 3.77±0 d | 3.89±0.01 c | ||
全磷Total phosphorus/(g·kg) | 2.19±0.02 e | 2.29±0.03 cd | 2.34±0.04 c | 2.41±0.02 b | 2.26±0.02 d | 2.54±0.05 a | 2.45±0.04 b | 2.27±0 d | ||
全钾Total potassium/(g·kg) | 6.22±0.08 f | 6.99±0.11 d | 7.01±0.08 d | 7.83±0.13 a | 7.28±0.08 c | 7.32±0.11 c | 7.58±0.23 b | 6.74±0.03 e | ||
水解性氮Hydrolyzed nitrogen/(mg·kg) | 276.53±2.21 b | 296.33±1.11 a | 245.24±3.32 d | 241.4±0 e | 258.65±0 c | 241.4±3.32 e | 175.62±1.11 f | 238.85±1.11 e | ||
有效磷Available phosphorus/(mg·kg) | 102.17±2.78 a | 97.1±0.61 b | 67.75±1.72 e | 81.86±1 c | 67.75±0.24 e | 71.89±1.87 d | 72.51±1.65 d | 71.37±1.15 d | ||
速效钾Fast-acting potassium/(mg·kg) | 293.41±0.86 g | 400.87±3.19 f | 517.33±9.44 e | 603.08±7.04 b | 619.83±6.68 a | 543.47±12.12 d | 588.95±9.14 c | 612.87±1.83 ab |
[1] |
Chen SQ, Gao JS, Chen HH, et al. The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils[J]. Soil, 2023, 9(1): 101-116.
doi: 10.5194/soil-9-101-2023 URL |
[2] |
Aloo BN, Tripathi V, Makumba BA, et al. Plant growth-promoting rhizobacterial biofertilizers for crop production: the past, present, and future[J]. Front Plant Sci, 2022, 13: 1002448.
doi: 10.3389/fpls.2022.1002448 URL |
[3] |
Aioub AAA, Elesawy AE, Ammar EE. Plant growth promoting rhizobacteria(PGPR)and their role in plant-parasitic nematodes control: a fresh look at an old issue[J]. J Plant Dis Prot, 2022, 129(6): 1305-1321.
doi: 10.1007/s41348-022-00642-3 |
[4] |
Asif M, Pervez A, Ahmad R. Role of melatonin and plant-growth-promoting rhizobacteria in the growth and development of plants[J]. CLEAN-Soil Air Water, 2019, 47(6): 1800459.
doi: 10.1002/clen.v47.6 URL |
[5] |
Chouyia FE, Romano I, Fechtali T, et al. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population[J]. Front Plant Sci, 2020, 11: 1137.
doi: 10.3389/fpls.2020.01137 URL |
[6] |
Romano I, Ventorino V, Ambrosino P, et al. Development and application of low-cost and eco-sustainable bio-stimulant containing a new plant growth-promoting strain Kosakonia pseudosacchari TL13[J]. Front Microbiol, 2020, 11: 2044.
doi: 10.3389/fmicb.2020.02044 pmid: 33013749 |
[7] |
Chopra A, Kumar Vandana U, Rahi P, et al. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India[J]. Biocatal Agric Biotechnol, 2020, 27: 101610.
doi: 10.1016/j.bcab.2020.101610 URL |
[8] |
Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria(PGPR)- prospective and mechanisms: a review[J]. J Pure Appl Microbiol, 2018, 12(2): 733-749.
doi: 10.22207/JPAM URL |
[9] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
|
[10] |
申云鑫, 施竹凤, 周旭东, 等. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0722 |
Shen YX, Shi ZF, Zhou XD, et al. Isolation, identification and bio-activity of three Bacillus strains with biocontrol function[J]. Biotechnol Bull, 2023, 39(3): 267-277. | |
[11] | 赵江源, 邹雪峰, 何翔, 等. 2株分泌型铁载体真菌对番茄青枯病的防效[J]. 植物保护, 2022, 48(4): 123-130. |
Zhao JY, Zou XF, He X, et al. Control effects of two siderophore-producing fungi against tomato bacterial wilt[J]. Plant Prot, 2022, 48(4): 123-130. | |
[12] |
Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiol Plant, 2003, 118(1): 10-15.
pmid: 12702008 |
[13] |
Rani N, Kaur G, Kaur S, et al. Plant growth-promoting attributes of zinc solubilizing Dietzia maris isolated from polyhouse rhizospheric soil of punjab[J]. Curr Microbiol, 2022, 80(1): 48.
doi: 10.1007/s00284-022-03147-2 |
[14] | 申云鑫, 赵江源, 王楠, 等. 具促生功能拟蕈状芽孢杆菌(Bacillus paramycoides)SH-1464发酵条件优化及其活性[J]. 微生物学通报, 2023, 50(6): 2436-2451. |
Shen YX, Zhao JY, Wang N, et al. Optimization of fermentation conditions of Bacillus paramycoides SH-1464 with growth-promoting activity[J]. Microbiol China, 2023, 50(6): 2436-2451. | |
[15] |
Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material[J]. BioTechniques, 1991, 10(4): 506-513.
pmid: 1867860 |
[16] |
Kushwaha P, Srivastava R, Pandiyan K, et al. Enhancement in plant growth and zinc biofortification of chickpea(Cicer arietinum L.) by Bacillus altitudinis[J]. J Soil Sci Plant Nutr, 2021, 21(2): 922-935.
doi: 10.1007/s42729-021-00411-5 |
[17] |
Forni C, Riov J, Grilli Caiola M, et al. Indole-3-acetic acid(IAA)production by Arthrobacter species isolated from Azolla[J]. J Gen Microbiol, 1992, 138(2): 377-381.
pmid: 1564446 |
[18] |
Li ZY, Chang SP, Ye ST, et al. Differentiation of 1-aminocyclopropane-1-carboxylate(ACC)deaminase from its homologs is the key for identifying bacteria containing ACC deaminase[J]. FEMS Microbiol Ecol, 2015, 91(10): fiv112.
doi: 10.1093/femsec/fiv112 URL |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-195. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000: 146-195. | |
[20] |
Kumar A, Patel JS, Meena VS, et al. Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture[J]. J Plant Nutr, 2019, 42(11/12): 1402-1415.
doi: 10.1080/01904167.2019.1616757 URL |
[21] |
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, et al. Common features of environmental and potentially beneficial plant-associated Burkholderia[J]. Microb Ecol, 2012, 63(2): 249-266.
doi: 10.1007/s00248-011-9929-1 pmid: 21850446 |
[22] |
Qu Q, Zhang ZY, Peijnenburg WJGM, et al. Rhizosphere microbiome assembly and its impact on plant growth[J]. J Agric Food Chem, 2020, 68(18): 5024-5038.
doi: 10.1021/acs.jafc.0c00073 URL |
[23] |
Guzmán-Guzmán P, Santoyo G. Action mechanisms, biodiversity, and omics approaches in biocontrol and plant growth-promotingPseudomonas: an updated review[J]. Biocontrol Sci Technol, 2022, 32(5): 527-550.
doi: 10.1080/09583157.2022.2066630 URL |
[24] |
Bhakat K, Chakraborty A, Islam E. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil[J]. World J Microbiol Biotechnol, 2021, 37(3): 39.
doi: 10.1007/s11274-021-03003-8 |
[25] |
Zhang XC, Wang NN, Hou MM, et al. Contribution of K solubilising bacteria(Burkholderia sp.)promotes tea plant growth(Camellia sinesis)and leaf polyphenols content by improving soil available K level[J]. Funct Plant Biol, 2022, 49(3): 283-294.
doi: 10.1071/FP21193 URL |
[26] |
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp[J]. Comput Struct Biotechnol J, 2020, 18: 3539-3554.
doi: 10.1016/j.csbj.2020.11.025 URL |
[27] |
Mohapatra B, Nain S, Sharma R, et al. Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov[J]. Environ Microbiol Rep, 2022, 14(3): 464-474.
doi: 10.1111/emi4.v14.3 URL |
[28] |
Singh P, Singh RK, Zhou Y, et al. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review[J]. J Plant Interact, 2022, 17(1): 220-238.
doi: 10.1080/17429145.2022.2029963 URL |
[29] | 周杨, 邓名荣, 杜娟, 等. 我国农业微生物产业发展研究[J]. 中国工程科学, 2022, 24(5): 197-206. |
Zhou Y, Deng MR, Du J, et al. Development of agricultural microbial industry in China[J]. Strateg Study CAE, 2022, 24(5): 197-206. | |
[30] |
Laha A, Bhattacharyya S, Sengupta S, et al. Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils[J]. Arch Microbiol, 2021, 203(7): 4677-4692.
doi: 10.1007/s00203-021-02460-x |
[31] |
Wang CR, Huang YC, Yang XR, et al. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126603.
doi: 10.1016/j.chemosphere.2020.126603 URL |
[32] |
Liu HK, Huang HY, Liang K, et al. Characterization of a cadmium-resistant functional bacteria(Burkholderia sp. SRB-1)and mechanism analysis at physiochemical and genetic level[J]. Environ Sci Pollut Res Int, 2023, 30(32): 78408-78422.
doi: 10.1007/s11356-023-27824-2 |
[33] |
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, et al. Metabolic footprints of Burkholderia sensu lato rhizosphere bacteria active against maize Fusarium pathogens[J]. Microorganisms, 2021, 9(10): 2061.
doi: 10.3390/microorganisms9102061 URL |
[34] |
Alam K, Zhao YM, Lu XF, et al. Isolation, complete genome sequencing and in silico genome mining of Burkholderia for secondary metabolites[J]. BMC Microbiol, 2022, 22(1): 323.
doi: 10.1186/s12866-022-02692-x |
[35] |
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria[J]. Curr Opin Biotechnol, 2022, 77: 102782.
doi: 10.1016/j.copbio.2022.102782 URL |
[36] | Aziz NA, Shaffie S, Rahman AYA, et al. Draft genome sequence of plant growth-promoting rhizobacterium Burkholderia sp. strain USMB20, isolated from nodules of Mucuna bracteata[J]. Microbiol Resour Announc, 2021, 10(11): e01051-e01020. |
[1] | 武利勤, 尚宏忠, 顾海科. 拮抗匍枝根霉的生防菌R1B的筛选鉴定和抑菌活析[J]. 生物技术通报, 2019, 35(4): 29-35. |
[2] | 刘洋, 李金霞, 姚粟, 张明娟, 陈建国, 程池. 一株西沙群岛野生诺尼内生细菌NG14的分类鉴定及拮抗活性[J]. 生物技术通报, 2014, 0(3): 100-105. |
[3] | 王连琴. 国内生物技术的研究开发概况[J]. , 1995, 0(02): 11-15. |
[4] | . 生物固氮[J]. , 1993, 0(05): 63-64. |
[5] | 王璋瑜;. 美国酝酿施用藻类生物肥料[J]. , 1988, 0(11): 15-16. |
[6] | 马亚敏;. 生物肥料将问世[J]. , 1985, 0(08): 125-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||