生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 77-84.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0870
收稿日期:
2023-09-11
出版日期:
2024-04-26
发布日期:
2024-04-30
作者简介:
桑森骅,男,硕士,工程师,研究方向:肿瘤发生分子机制及细胞免疫治疗;E-mail: sangsenhua@aliyun.com
Received:
2023-09-11
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】细胞免疫疗法是当前发展快速且可靠的治疗癌症的手段,为开发检测细胞治疗产品效价的新方法。【方法】通过监测肿瘤细胞荧光的变化来反馈细胞毒性。通过构建表达绿色荧光蛋白(green fluorescent protein, GFP)的肿瘤细胞,建立了一种基于活细胞实时动态成像系统的方法来评估细胞治疗产品的细胞毒性。【结果】使用活细胞实时动态成像系统监测K562-GFP细胞,发现其总荧光强度与细胞数量呈现出良好的线性关系。在极低效靶比的共培养条件下,也能展现出高精确性。通过计算NK细胞对K562-GFP细胞的半最大效应浓度(EC50)能够整体地评价NK细胞的细胞毒性。利用流式细胞术检测K562-GFP细胞凋亡与细胞荧光蛋白淬灭的相关性,证明了检测方法的可行性。【结论】该方法无需再使用染料或者抗体,就能够低成本的评估不同类型或生产工艺的免疫细胞对各种肿瘤细胞的杀伤能力。
桑森骅. 基于实时动态成像系统对NK细胞毒性的检测方法[J]. 生物技术通报, 2024, 40(4): 77-84.
SANG Sen-hua. Detection of NK Cell Cytotoxicity: Real-time Dynamic Imaging-Based Analysis[J]. Biotechnology Bulletin, 2024, 40(4): 77-84.
图1 K562-GFP细胞的转染效率及荧光强度 A:将K562-GFP细胞的白光图片与荧光图片整合,能够观察到GFP转染K562的情况;B:通过流式分析K562-GFP细胞的绿色荧光强度
Fig. 1 Transfection efficiency and fluorescence intensity of K562-GFP cells A: The transfection of K562-GFP cells with GFP was observed by integrating the white light image with the fluorescence image. B: The green fluorescence intensity of K562-GFP cells was analyzed by flow cytometry
图2 实时监测不同接种密度的K562-GFP细胞在48 h内的增殖曲线
Fig. 2 Proliferation curves of K562-GFP cells with different inoculation densities within 48 h monitored in real-time
图3 总荧光强度与细胞数量的关系 在早期阶段(黑色实线)和生长期阶段(蓝色实线)两个时间点的细胞数量与总荧光强度均呈现出较好的线性关系
Fig. 3 Relationship between total intensity and number of cells There is a good linear relationship between the number of cells and the total fluorescence intensity at both the early stage(solid black line)and the growth stage(solid blue line)
图4 NK细胞与K562-GFP细胞在不同共培养时刻的绿色荧光图片 不同的培养组别(列),包括K562单独的培养组及NK与K562在不同效靶比(0.1、0.3、1、3、9)下的共培养组在不同的共培养时间(行)的荧光图片,拍摄的共培养时间参数包括0、4、8、24、38 h
Fig. 4 Green fluorescence images of NK cells and K562-GFP cells at different co-culture moments Fluorescence images of different culture groups(columns), including the single culture group of K562 and the co-culture groups of NK and K562 at different efficiency target ratios(0.1, 0.3, 1, 3, and 9)at different co-culture times(rows), and co-culture time parameters captured included 0, 4, 8, 24, and 38 h
图5 NK细胞介导的细胞毒性导致K562-GFP细胞裂解的变化曲线 实时监测40 h内,单独K562-GFP的增殖曲线(虚线),以及不同效靶比(9∶1、3∶1、1∶1、0.3∶1、0.1∶1)下NK细胞所介导的细胞毒性裂解K562-GFP细胞的变化曲线(实线)
Fig. 5 Changing curves of NK cells-mediated cytotoxicity leading to K562-GFP cell lysis The proliferation curve of K562-GFP alone(dotted line)and the cytotoxic cleavage curve of K562-GFP cells mediated by NK cells under different effect target ratios(9∶1, 3∶1, 1∶1, 0.3∶1, and 0.1∶1)are monitored in real time within 40 h(solid line)
图6 NK细胞在不同共培养时间点对K562-GFP细胞介导的细胞毒性 效应细胞与靶细胞共培养过程中每0.5 h所获取的不同效靶比(9∶1、3∶1、1∶1、0.3∶1、0.1∶1)对应的细胞毒性所生成的4PL曲线,其中蓝色实线为24 h的4PL曲线
Fig. 6 Cytotoxicity mediated by NK cells to K562-GFP cells at different co-culture time points The 4PL curves corresponding to different effector target ratios(9∶1, 3∶1, 1∶1, 0.3∶1, 0.1∶1)obtained every 0.5 h during co-culture of effector cells and target cells, where the solid blue line is the 4PL curve of 24 h
图7 共培养阶段NK细胞对K562-GFP细胞的EC50 效应细胞与靶细胞共培养过程中每0.5 h所生成的EC50实时变化曲线(红色实线)以及共培养24 h的EC50的结果
Fig. 7 EC50 of NK cells to K562-GFP cells in co-culture stage The real-time change curve of EC50 generated every 0.5 h during co-culture of effector cells and target cells(solid red line)and the results of EC50 coculture for 24 h
图8 两种不同细胞毒性计算方式的比较 A:共培养2 h的NK细胞毒性;B:共培养4 h的NK细胞毒性;C:共培养6 h的NK细胞毒性;D:共培养24 h的NK细胞毒性。晚期凋亡指示剂7AAD+细胞群计算NK细胞对K562-GFP细胞的细胞毒性(黑色),GFP+细胞群计算NK细胞对K562-GFP细胞的细胞毒性(红色)
Fig. 8 Comparison of two different methods of calculating cytotoxicity A: Cytotoxicity of NK cells at co-culture for 2 h. B: Cytotoxicity of NK cells at co-culture for 4 h. C: Cytotoxicity of NK cells at co-culture for 6 h. D: Cytotoxicity of NK cells at co-culture for 24 h. Late apoptosis indicator 7AAD+ cell population for calculating the cytotoxicity of NK cells to K562-GFP cells(black), and GFP+ cell population for calculating the cytotoxicity of NK cells to K562-GFP cells(red)
图9 晚期凋亡细胞与绿色荧光蛋白降解的相关性 横坐标为晚期凋亡指示剂7AAD+细胞群计算NK细胞对K562-GFP细胞的细胞毒性,纵坐标为GFP+细胞群计算NK细胞对K562-GFP细胞的细胞毒性
Fig. 9 Correlation between late apoptotic cells and green fluorescent protein degradation The horizontal coordinate is 7AAD+ cell population to calculate the cytotoxicity of NK cells to K562-GFP cells, and the vertical coordinate is GFP+ cell population to calculate the cytotoxicity of NK cells to K562-GFP cells
[1] |
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA A Cancer J Clinicians, 2017, 67(3): 177-193.
doi: 10.3322/caac.v67.3 URL |
[2] |
Yang XL, Cao WD, Wang XF, et al. Down-regulation of 14-3-3zeta reduces proliferation and increases apoptosis in human glioblastoma[J]. Cancer Gene Ther, 2020, 27(6): 399-411.
doi: 10.1038/s41417-019-0097-7 pmid: 31068674 |
[3] | Chen ZW, Zhang PD, Xu Y, et al. Surgical stress and cancer progression: the twisted tango[J]. Mol Cancer, 2019, 18(1): 132. |
[4] | Fokas E, Schlenska-Lange A, Polat B, et al. Chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for patients with locally advanced rectal cancer: long-term results of the CAO/ARO/AIO-12 randomized clinical trial[J]. JAMA Oncol, 2022, 8(1): e215445. |
[5] |
Xu-Monette ZY, Zhou JF, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas[J]. Blood, 2018, 131(1): 68-83.
doi: 10.1182/blood-2017-07-740993 pmid: 29118007 |
[6] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA A Cancer J Clinicians, 2015, 65(2): 87-108.
doi: 10.3322/caac.21262 URL |
[7] |
Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures[J]. Med Res Rev, 2015, 35(2): 408-436.
doi: 10.1002/med.21338 pmid: 25588753 |
[8] | Haslauer T, Greil R, Zaborsky N, et al. CAR T-cell therapy in hematological malignancies[J]. Int J Mol Sci, 2021, 22(16): 8996. |
[9] |
Kiesgen S, Messinger JC, Chintala NK, et al. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity[J]. Nat Protoc, 2021, 16(3): 1331-1342.
doi: 10.1038/s41596-020-00467-0 pmid: 33589826 |
[10] | Lisby AN, Carlson RD, Baybutt TR, et al. Evaluation of CAR-T cell cytotoxicity: real-time impedance-based analysis[J]. Methods Cell Biol, 2022, 167: 81-98. |
[11] |
Cen H, Mao F, Aronchik I, et al. DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells[J]. FASEB J, 2008, 22(7): 2243-2252.
doi: 10.1096/fj.07-099234 pmid: 18263700 |
[12] |
Komoriya A, Packard BZ, Brown MJ, et al. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates[J]. J Exp Med, 2000, 191(11): 1819-1828.
doi: 10.1084/jem.191.11.1819 pmid: 10839799 |
[13] |
Liu LZ, Chahroudi A, Silvestri G, et al. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates[J]. Nat Med, 2002, 8(2): 185-189.
pmid: 11821904 |
[14] |
Poreba M, Szalek A, Kasperkiewicz P, et al. Small molecule active site directed tools for studying human caspases[J]. Chem Rev, 2015, 115(22): 12546-12629.
doi: 10.1021/acs.chemrev.5b00434 pmid: 26551511 |
[15] | Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances[J]. Mol Cancer, 2023, 22(1): 20. |
[16] |
Franks SE, Wolfson B, Hodge JW. Natural born killers: NK cells in cancer therapy[J]. Cancers, 2020, 12(8): 2131.
doi: 10.3390/cancers12082131 URL |
[17] |
Wu XL, Zhang Y, Li YT, et al. Improvements in flow cytometry-based cytotoxicity assay[J]. Cytometry A, 2021, 99(7): 680-688.
doi: 10.1002/cyto.a.v99.7 URL |
[18] |
Chen XZ, Gao AQ, Zhang F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416.
doi: 10.7150/thno.52435 pmid: 33537094 |
[19] | Oberg HH, Peters C, Kabelitz D, et al. Real-time cell analysis(RTCA)to measure killer cell activity against adherent tumor cells in vitro[J]. Methods Enzymol, 2020, 631: 429-441. |
[20] |
Maser T, Zagorski J, Kelly S, et al. The MDM2 inhibitor CGM097 combined with the BET inhibitor OTX015 induces cell death and inhibits tumor growth in models of neuroblastoma[J]. Cancer Med, 2020, 9(21): 8144-8158.
doi: 10.1002/cam4.v9.21 URL |
[21] |
Wetzel A, Bonnefoy F, Chagué C, et al. Pro-resolving factor administration limits cancer progression by enhancing immune response against cancer cells[J]. Front Immunol, 2022, 12: 812171.
doi: 10.3389/fimmu.2021.812171 URL |
[22] | Park DJ, Sung PS, Kim JH, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1[J]. J Immunother Cancer, 2020, 8(1): e000301. |
[23] |
Irelan JT, Wu MJ, Morgan J, et al. Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis[J]. J Biomol Screen, 2011, 16(3): 313-322.
doi: 10.1177/1087057110397359 pmid: 21310850 |
[24] | Meng JY, Peng J, Feng J, et al. Niraparib exhibits a synergistic anti-tumor effect with PD-L1 blockade by inducing an immune response in ovarian cancer[J]. J Transl Med, 2021, 19(1): 415. |
[25] | Zhang D, Teng R, Lv N, et al. A novel CD2 staining-based flow cytometric assay for assessment of natural killer cell cytotoxicity[J]. J Clin Lab Anal, 2020, 34(12): e23519. |
[26] |
Zhou L, Wang SS, Cao LN, et al. Lead acetate induces apoptosis in Leydig cells by activating PPARγ/caspase-3/PARP pathway[J]. Int J Environ Health Res, 2021, 31(1): 34-44.
doi: 10.1080/09603123.2019.1625034 URL |
[27] |
Jahanian-Najafabadi A, Mirian M, Rohani F, et al. Novel palladium complex: cytotoxicity against cisplatin-resistant K562 cells[J]. Iran J Pharm Res, 2019, 18(3): 1323-1331.
doi: 10.22037/ijpr.2019.1100714 pmid: 32641942 |
[28] |
Rezano A, Ridhayanti F, Rangkuti AR, et al. Cytotoxicity of simvastatin in human breast cancer MCF-7 and MDA-MB-231 cell lines[J]. Asian Pac J Cancer Prev, 2021, 22(S1): 33-42.
doi: 10.31557/APJCP.2021.22.S1.33 URL |
[29] | Ismail NI, Othman I, Abas F, et al. The curcumin analogue, MS13(1, 5-bis(4-hydroxy-3- methoxyphenyl)-1, 4-pentadiene-3-one), inhibits cell proliferation and induces apoptosis in primary and metastatic human colon cancer cells[J]. Molecules, 2020, 25 (17): 3798. |
[30] | Wurster S, Kumaresan PR, Albert ND, et al. Live monitoring and analysis of fungal growth, viability, and mycelial morphology using the IncuCyte NeuroTrack processing module[J]. mBio, 2019, 10(3): e00673-19. |
[1] | 李艳伟, 宋兴辉, 王佳佳, 刘丽, 黄莹莹, 郭春. 实时无标记肿瘤细胞凋亡筛选技术体系的建立[J]. 生物技术通报, 2019, 35(10): 220-226. |
[2] | 王颖;. Cellco将毛细管细胞培养装置推向市场[J]. , 1993, 0(07): 17-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||