生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0234
• 综述与专论 • 下一篇
收稿日期:
2024-03-10
出版日期:
2024-08-26
发布日期:
2024-09-05
通讯作者:
刘勇波,男,博士,研究员,研究方向:生物多样性与生物安全;E-mail: liuyb@craes.org.cn作者简介:
李文萃,女,硕士研究生,研究方向:生物多样性与生物安全;E-mail: 2796057166@qq.com
基金资助:
LI Wen-cui(), PENG Yu-jia, LIU Yong-bo()
Received:
2024-03-10
Published:
2024-08-26
Online:
2024-09-05
摘要:
温度和光是调节植物生长发育的重要环境因子,植物感知温度变化并通过改变基因表达模式等响应低温环境,这些响应受到光信号和昼夜节律等因素的影响。然而,光信号诱导昼夜节律调控植物响应冷胁迫的分子调控网络尚不清楚。本文聚焦光信号和昼夜节律在植物感知冷胁迫中的作用。光信号参与冷胁迫主要通过光敏色素诱导CBF基因途径激活冷基因的表达,这主要有两种途径,一是光敏色素受体通过直接调控CBF和COR基因表达而调节植株抗冷性;二是光依赖性信号转导的正调控因子HY5激活冷驯化COR基因。昼夜节律参与冷胁迫主要是通过昼夜节律的组分CCA1/LHY和RVE4/RVE8介导DREB1下游基因在冷胁迫下的表达。明确植物中光信号和昼夜节律在冷信号感知及传导途径中的作用,不仅有助于更好地理解植物抗冷的机制和功能,还有助于植物生长与温度胁迫反应之间的权衡,为提升植物应对昼夜温差变化提供理论基础。
李文萃, 彭羽佳, 刘勇波. 光信号和昼夜节律调控植物感知冷胁迫的研究进展[J]. 生物技术通报, 2024, 40(8): 1-12.
LI Wen-cui, PENG Yu-jia, LIU Yong-bo. Research Progress in Light Signal and Circadian Rhythm Regulating the Perception of Plants to Cold Stress[J]. Biotechnology Bulletin, 2024, 40(8): 1-12.
基因/蛋白 Genes/Proteins | 调控机制 Regulation mechanisms | 物种 Species | 参考文献 Reference |
---|---|---|---|
光敏色素A(phyA)Phytochrome A | 远红光激活phyA诱导ABA信号传导,触发JA信号传导,激活CBF途径 | 拟南芥Arabidopsis thaliana 番茄S. lycopersicum | [ [ |
光敏色素B(phyB)Phytochrome B | phyB与PIF4和PIF7相互作用,负调控CBF表达和冷冻耐受性 | 拟南芥A. thaliana 番茄S. lycopersicum 水稻Oryza sativa | [ [ [ |
光敏色素D(phyD)Phytochrome D | 介导CBF调控的表达,phyD突变体耐冷性增加 | 拟南芥A. thaliana | [ |
向光素(PHOTs)Phototropins | 蓝光传感器,在蓝光光激发时自磷酸化,激活C-末端激酶结构域,调控其他蛋白质 | 地钱 Marchantia polymorpha | [ |
F-box 蛋白 Zeitlupe(ZTL)Zeitlupe | ZTL属于LOV结构域光感受器,与热休克伴侣蛋白HSP 90相互作用从而正调控CBF表达 | 拟南芥A. thaliana | [ |
隐花色素1(CRY1)Cryptochrome 1 | 蓝光下CRY1对温度响应对下胚轴伸长具有强烈的抑制作用,同时也抑制PIF4的转录 | 拟南芥A. thaliana | [ |
隐花色素2(CRY1)Cryptochrome 2 | CRY2-COP1相互作用减弱COP1与HY5的相互作用,从而增强HY5在冷胁迫下的光稳定性 | 拟南芥A. thaliana 水稻O. sativa | [ [ |
UVR8感受器(UVR8) UV resistance locus 8 | UVR8单体通过降低PIF4表达水平和抑制PIF4蛋白的转录活性来抑制下胚轴伸长 | 拟南芥A. thaliana | [ |
光敏色素相互作用因子3(PIF3) Phytochrome interacting factor 3 | 抑制CBF表达负调控抗冷性 | 拟南芥A. thaliana | [ |
光敏色素相互作用因子4(PIF4) Phytochrome interacting factor 4 | 长日照下,PIF4和PIF7与CBF基因启动子结合抑制其表达 | 拟南芥A. thaliana 番茄S. lycopersicum | [ [ |
光敏色素相互作用因子7(PIF7) Phytochrome interacting factor 7 | 长日照下,PIF4和PIF7与CBF基因启动子结合抑制其表达 | 拟南芥A. thaliana | [ |
昼夜节律核心蛋白(CCA1) Circadian clock-associated 1 | CCA1与CBF启动子结合,通过选择性剪接机制增强冷适应 | 拟南芥A. thaliana | [ [ |
昼夜节律核心蛋白(LHY) Late elongated hypocotyl | 正调控CBFs及其下游COR基因的表达和植物的抗冷性 | 拟南芥A. thaliana 草莓Fragaria×ananassa 茶树Camellia sinensis | [ [ [ |
伪应答调控蛋白5/7/9(PRR5/7/9) Pseudo response regulator 5/7/9 | CBF途径的负调控因子 | 拟南芥A. thaliana | [ |
昼夜节律因子(TOC1) Timing of cab expression | 与CBF2转录阻遏物的phyB一起发挥作用 | 拟南芥A. thaliana | [ |
伸长下胚轴5(HY5) Elongated hypocotyl 5 | HY5通过Z-box/LTRE正向调控冷诱导基因表达 | 拟南芥A. thaliana 番茄S. lycopersicum 油菜 Brassica napus | [ [ [ |
核心时钟蛋白(GI)Gigantea | 通过CBF非依赖性途径正调控抗冷性 | 拟南芥A. thaliana | [ |
生物钟核心基因(LUX)Lux arrhythmo | LUX被CBF1正调控,表达上调,正向调控植物抗冷性 | 拟南芥A. thaliana | [ |
生物钟组分RVE4/RVE8 | RVE4/RVE8迅速从细胞质转移到细胞核中的冷应激反应,并作为DREB 1表达的直接转录激活因子 | 拟南芥A. thaliana | [ |
生物钟组分LNK1/2 | LNK1/2是转录辅激活因子,与RVE4和RVE8相互作用 | 拟南芥A. thaliana | [ |
表1 参与植物冷感知的光信号和昼夜节律的因子
Table 1 Factors of light signal and circadian rhythm involved in plant cold perception
基因/蛋白 Genes/Proteins | 调控机制 Regulation mechanisms | 物种 Species | 参考文献 Reference |
---|---|---|---|
光敏色素A(phyA)Phytochrome A | 远红光激活phyA诱导ABA信号传导,触发JA信号传导,激活CBF途径 | 拟南芥Arabidopsis thaliana 番茄S. lycopersicum | [ [ |
光敏色素B(phyB)Phytochrome B | phyB与PIF4和PIF7相互作用,负调控CBF表达和冷冻耐受性 | 拟南芥A. thaliana 番茄S. lycopersicum 水稻Oryza sativa | [ [ [ |
光敏色素D(phyD)Phytochrome D | 介导CBF调控的表达,phyD突变体耐冷性增加 | 拟南芥A. thaliana | [ |
向光素(PHOTs)Phototropins | 蓝光传感器,在蓝光光激发时自磷酸化,激活C-末端激酶结构域,调控其他蛋白质 | 地钱 Marchantia polymorpha | [ |
F-box 蛋白 Zeitlupe(ZTL)Zeitlupe | ZTL属于LOV结构域光感受器,与热休克伴侣蛋白HSP 90相互作用从而正调控CBF表达 | 拟南芥A. thaliana | [ |
隐花色素1(CRY1)Cryptochrome 1 | 蓝光下CRY1对温度响应对下胚轴伸长具有强烈的抑制作用,同时也抑制PIF4的转录 | 拟南芥A. thaliana | [ |
隐花色素2(CRY1)Cryptochrome 2 | CRY2-COP1相互作用减弱COP1与HY5的相互作用,从而增强HY5在冷胁迫下的光稳定性 | 拟南芥A. thaliana 水稻O. sativa | [ [ |
UVR8感受器(UVR8) UV resistance locus 8 | UVR8单体通过降低PIF4表达水平和抑制PIF4蛋白的转录活性来抑制下胚轴伸长 | 拟南芥A. thaliana | [ |
光敏色素相互作用因子3(PIF3) Phytochrome interacting factor 3 | 抑制CBF表达负调控抗冷性 | 拟南芥A. thaliana | [ |
光敏色素相互作用因子4(PIF4) Phytochrome interacting factor 4 | 长日照下,PIF4和PIF7与CBF基因启动子结合抑制其表达 | 拟南芥A. thaliana 番茄S. lycopersicum | [ [ |
光敏色素相互作用因子7(PIF7) Phytochrome interacting factor 7 | 长日照下,PIF4和PIF7与CBF基因启动子结合抑制其表达 | 拟南芥A. thaliana | [ |
昼夜节律核心蛋白(CCA1) Circadian clock-associated 1 | CCA1与CBF启动子结合,通过选择性剪接机制增强冷适应 | 拟南芥A. thaliana | [ [ |
昼夜节律核心蛋白(LHY) Late elongated hypocotyl | 正调控CBFs及其下游COR基因的表达和植物的抗冷性 | 拟南芥A. thaliana 草莓Fragaria×ananassa 茶树Camellia sinensis | [ [ [ |
伪应答调控蛋白5/7/9(PRR5/7/9) Pseudo response regulator 5/7/9 | CBF途径的负调控因子 | 拟南芥A. thaliana | [ |
昼夜节律因子(TOC1) Timing of cab expression | 与CBF2转录阻遏物的phyB一起发挥作用 | 拟南芥A. thaliana | [ |
伸长下胚轴5(HY5) Elongated hypocotyl 5 | HY5通过Z-box/LTRE正向调控冷诱导基因表达 | 拟南芥A. thaliana 番茄S. lycopersicum 油菜 Brassica napus | [ [ [ |
核心时钟蛋白(GI)Gigantea | 通过CBF非依赖性途径正调控抗冷性 | 拟南芥A. thaliana | [ |
生物钟核心基因(LUX)Lux arrhythmo | LUX被CBF1正调控,表达上调,正向调控植物抗冷性 | 拟南芥A. thaliana | [ |
生物钟组分RVE4/RVE8 | RVE4/RVE8迅速从细胞质转移到细胞核中的冷应激反应,并作为DREB 1表达的直接转录激活因子 | 拟南芥A. thaliana | [ |
生物钟组分LNK1/2 | LNK1/2是转录辅激活因子,与RVE4和RVE8相互作用 | 拟南芥A. thaliana | [ |
[1] | Ritonga FN, Chen S. Physiological and molecular mechanism involved in cold stress tolerance in plants[J]. Plants, 2020, 9(5): 560. |
[2] | Yadav RK, Yadav G, Prajapat K. Management strategies for abiotic stresses in crops under different agro-ecological situations[J]. Indian Journal of Agronom, 2023, 68(22): 170-86. |
[3] |
Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures[J]. Planta, 2012, 235(6): 1091-1105.
doi: 10.1007/s00425-012-1641-y pmid: 22526498 |
[4] |
Zhu JH, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J]. Curr Opin Plant Biol, 2007, 10(3): 290-295.
doi: 10.1016/j.pbi.2007.04.010 pmid: 17468037 |
[5] | Dirk LMA, Abdel CG, Ahmad I, et al. Late embryogenesis abundant protein-client protein interactions[J]. Plants, 2020, 9(7): 814. |
[6] |
Liu JY, Shi YT, Yang SH. Insights into the regulation of C-repeat binding factors in plant cold signaling[J]. J Integr Plant Biol, 2018, 60(9): 780-795.
doi: 10.1111/jipb.12657 |
[7] |
Ding YL, Shi YT, Yang SH. Molecular regulation of plant responses to environmental temperatures[J]. Mol Plant, 2020, 13(4): 544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158 |
[8] | Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
[9] |
Wang JC, Ren YL, Liu X, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Mol Plant, 2021, 14(2): 315-329.
doi: 10.1016/j.molp.2020.11.022 pmid: 33278597 |
[10] | Iqbal Z, Shariq Iqbal M, Singh SP, et al. Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation[J]. Front Plant Sci, 2020, 11: 598327. |
[11] | Kim SH, Kim HS, Bahk S, et al. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis[J]. Nucleic Acids Res, 2017, 45(11): 6613-6627. |
[12] |
Shi YT, Ding YL, Yang SH. Molecular regulation of CBF signaling in cold acclimation[J]. Trends Plant Sci, 2018, 23(7): 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429 |
[13] |
Song Y, Zhang XY, Li MZ, et al. The direct targets of CBFs: in cold stress response and beyond[J]. J Integr Plant Biol, 2021, 63(11): 1874-1887.
doi: 10.1111/jipb.13161 |
[14] | Shi YT, Tian SW, Hou LY, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2578-2595. |
[15] |
Plieth C, Hansen UP, Knight H, et al. Temperature sensing by plants: the primary characteristics of signal perception and calcium response[J]. Plant J, 1999, 18(5): 491-497.
pmid: 10417699 |
[16] |
Orvar BL, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. Plant J, 2000, 23(6): 785-794.
doi: 10.1046/j.1365-313x.2000.00845.x pmid: 10998189 |
[17] | Ding YL, Jia YX, Shi YT, et al. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses[J]. EMBO J, 2018, 37(8): e98228. |
[18] | Jin YN, Zhai SS, Wang WJ, et al. Identification of genes from the ICE-CBF-COR pathway under cold stress in Aegilops- Triticum composite group and the evolution analysis with those from Tritice-ae[J]. Physiol Mol Biol Plants, 2018, 24(2): 211-229. |
[19] | Lee CM, Thomashow MF. Photoperiodic regulation of the C-repeat binding factor(CBF)cold acclimation pathway and freezing tolerance in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2012, 109(37): 15054-15059. |
[20] |
Guo XY, Xu SJ, Chong K. Cold signal shuttles from membrane to nucleus[J]. Mol Cell, 2017, 66(1): 7-8.
doi: S1097-2765(17)30200-9 pmid: 28388442 |
[21] | Hirano S, Sasaki K, Osaki Y, et al. The localization of phototropin to the plasma membrane defines a cold-sensing compartment in Marchantia polymorpha[J]. PNAS Nexus, 2022, 1(2): pgac030. |
[22] | Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900. |
[23] | Roeber VM, Bajaj I, Rohde M, et al. Light acts as a stressor and influences abiotic and biotic stress responses in plants[J]. Plant Cell Environ, 2021, 44(3): 645-664. |
[24] | Song JY, Liu QJ, Hu BR, et al. Photoreceptor PhyB involved in Arabidopsis temperature perception and heat-tolerance formation[J]. Int J Mol Sci, 2017, 18(6): 1194. |
[25] |
Franklin KA, Whitelam GC. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nat Genet, 2007, 39(11): 1410-1413.
doi: 10.1038/ng.2007.3 pmid: 17965713 |
[26] |
Xu DQ, Deng XW. CBF-phyB-PIF module links light and low temperature signaling[J]. Trends Plant Sci, 2020, 25(10): 952-954.
doi: S1360-1385(20)30206-5 pmid: 32682648 |
[27] | Noren L, Kindgren P, Stachula P, et al. HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression[J]. Plant Physiol, 2016: pp.00374.2016. |
[28] | Zhu W, Zhou H, Lin F, et al. COLD-REGULATED GENE27 integrates signals from light and the circadian clock to promote hypocotyl growth in Arabidopsis[J]. Plant Cell, 2020, 32(10): 3155-3169. |
[29] | Park MJ, Seo PJ, Park CM. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidop-sis[J]. Plant Signal Behav, 2012, 7(9): 1194-1196. |
[30] | Wu YD, Di TM, Wu ZJ, et al. CsLHY positively regulates cold tolerance by activating CsSWEET17 in tea plants[J]. Plant Physiol Biochem, 2024, 207: 108341. |
[31] | Dong MA, Farré EM, Thomashow MF. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor(CBF)pathway in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(17): 7241-7246. |
[32] | Hwarari D, Guan YL, Ahmad B, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress[J]. Int J Mol Sci, 2022, 23(3): 1549. |
[33] | Aslam M, Fakher B, Ashraf MA, et al. Plant low-temperature stress: signaling and response[J]. Agronomy, 2022, 12(3): 702. |
[34] |
Rapacz M, Ergon A, Höglind M, et al. Overwintering of herbaceous plants in a changing climate. Still more questions than answers[J]. Plant Sci, 2014, 225: 34-44.
doi: 10.1016/j.plantsci.2014.05.009 pmid: 25017157 |
[35] |
Wang F, Guo ZX, Li HZ, et al. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling[J]. Plant Physiol, 2016, 170(1): 459-471.
doi: 10.1104/pp.15.01171 pmid: 26527654 |
[36] | Jiang BC, Shi YT, Peng Y, et al. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis[J]. Mol Plant, 2020, 13(6): 894-906. |
[37] |
Al-Sady B, Ni WM, Kircher S, et al. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation[J]. Mol Cell, 2006, 23(3): 439-446.
doi: 10.1016/j.molcel.2006.06.011 pmid: 16885032 |
[38] |
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins[J]. Annu Rev Plant Biol, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712 |
[39] | Leivar P, Monte E. PIFs: systems integrators in plant development[J]. Plant Cell, 2014, 26(1): 56-78. |
[40] |
Maibam P, Nawkar GM, Park JH, et al. The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance[J]. Int J Mol Sci, 2013, 14(6): 11527-11543.
doi: 10.3390/ijms140611527 pmid: 23722661 |
[41] | Guan YL, Hwarari D, Korboe HM, et al. Low temperature stress-induced perception and molecular signaling pathways in plants[J]. Environ Exp Bot, 2023, 207: 105190. |
[42] | Catalá R, Medina J, Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidop-sis[J]. Proc Natl Acad Sci USA, 2011, 108(39): 16475-16480. |
[43] | Jin JJ, Sun WC, Wu JY, et al. Hypocotyl elongation based on HY5 transcription factor in cold resistant winter rapeseed(Brassica napus L.)[J]. Oil Crop Sci, 2022, 7(1): 40-52. |
[44] |
Delker C, Sonntag L, James GV, et al. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis[J]. Cell Rep, 2014, 9(6): 1983-1989.
doi: 10.1016/j.celrep.2014.11.043 pmid: 25533339 |
[45] |
Qi LJ, Shi YT, Terzaghi W, et al. Integration of light and temperature signaling pathways in plants[J]. J Integr Plant Biol, 2022, 64(2): 393-411.
doi: 10.1111/jipb.13216 |
[46] | Prerostova S, Dobrev PI, Knirsch V, et al. Light quality and intensity modulate cold acclimation in Arabidopsis[J]. Int J Mol Sci, 2021, 22(5): 2736. |
[47] |
Wang XB, Zeng WF, Ding YF, et al. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening[J]. Plant Sci, 2019, 283: 116-126.
doi: S0168-9452(18)31012-4 pmid: 31128681 |
[48] | He YN, Li YP, Cui LX, et al. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice[J]. Front Plant Sci, 2016, 7: 1963. |
[49] |
Fujii Y, Tanaka H, Konno N, et al. Phototropin perceives temperature based on the lifetime of its photoactivated state[J]. Proc Natl Acad Sci USA, 2017, 114(34): 9206-9211.
doi: 10.1073/pnas.1704462114 pmid: 28784810 |
[50] |
Zhong M, Zeng BJ, Tang DY, et al. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis[J]. Mol Plant, 2021, 14(8): 1328-1342.
doi: 10.1016/j.molp.2021.05.011 pmid: 33971366 |
[51] | Chen YD, Hu XH, Liu SY, et al. Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases[J]. Nat Commun, 2021, 12(1): 2155. |
[52] | Singh S, Sharma P, Mishra S, et al. CRY2 gene of rice(Oryza sati-va subsp. indica)encodes a blue light sensory receptor involved in regulating flowering, plant height and partial photomorphogenesis in dark[J]. Plant Cell Rep, 2023, 42(1): 73-89. |
[53] | Findlay KMW, Jenkins GI. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions[J]. Plant Cell Environ, 2016, 39(8): 1706-1714. |
[54] | Jiang BC, Shi YT, Zhang XY, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6695-E6702. |
[55] | Xu Y, Zhu ZQ. PIF4 and PIF4-interacting proteins: At the nexus of plant light, temperature and hormone signal integrations[J]. Int J Mol Sci, 2021, 22(19): 10304. |
[56] |
Wang F, Chen XX, Dong SJ, et al. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato[J]. Plant Biotechnol J, 2020, 18(4): 1041-1055.
doi: 10.1111/pbi.13272 pmid: 31584235 |
[57] | Lee BH, Kapoor A, Zhu JH, et al. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis[J]. Plant Cell, 2006, 18(7): 1736-1749. |
[58] | Seo PJ, Park MJ, Lim MH, et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2427-2442. |
[59] | Zhang Y, Zhang YT, Lin YX, et al. A transcriptomic analysis reveals diverse regulatory networks that respond to cold stress in strawberry(Fragaria × ananassa)[J]. Int J Genomics, 2019, 2019: 7106092. |
[60] |
Nakamichi N, Kusano M, Fukushima A, et al. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response[J]. Plant Cell Physiol, 2009, 50(3): 447-462.
doi: 10.1093/pcp/pcp004 pmid: 19131357 |
[61] |
Kidokoro S, Maruyama K, Nakashima K, et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis[J]. Plant Physiol, 2009, 151(4): 2046-2057.
doi: 10.1104/pp.109.147033 pmid: 19837816 |
[62] | Hayami N, Sakai Y, Kimura M, et al. The responses of Arabidopsis early light-induced Protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements[J]. Plant Physiol, 2015, 169(1): 840-855. |
[63] | Zhang LY, Jiang XC, Liu QY, et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant Cell Environ, 2020, 43(11): 2712-2726. |
[64] | Cao SQ, Ye M, Jiang ST. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis[J]. Plant Cell Rep, 2005, 24(11): 683-690. |
[65] | Chow BY, Sanchez SE, Breton G, et al. Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabi-dopsis[J]. Curr Biol, 2014, 24(13): 1518-1524. |
[66] | Kidokoro S, Hayashi K, Haraguchi H, et al. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis[J]. Proc Natl Acad Sci USA, 2021, 118(10): e2021048118. |
[67] | Xie QG, Wang P, Liu X, et al. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator[J]. Plant Cell, 2014, 26(7): 2843-2857. |
[68] |
Casal JJ. Photoreceptor signaling networks in plant responses to shade[J]. Annu Rev Plant Biol, 2013, 64: 403-427.
doi: 10.1146/annurev-arplant-050312-120221 pmid: 23373700 |
[69] | Jung JH, Domijan M, Klose C, et al. Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314): 886-889. |
[70] |
Chen D, Lyu MH, Kou XX, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochromeB[J]. Mol Cell, 2022, 82(16): 3015-3029.e6.
doi: 10.1016/j.molcel.2022.05.026 pmid: 35728588 |
[71] |
Burgie ES, Bussell AN, Lye SH, et al. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor[J]. Sci Rep, 2017, 7(1): 13648.
doi: 10.1038/s41598-017-14037-0 pmid: 29057954 |
[72] |
Franklin KA, Praekelt U, Stoddart WM, et al. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis[J]. Plant Physiol, 2003, 131(3): 1340-1346.
doi: 10.1104/pp.102.015487 pmid: 12644683 |
[73] |
Debrieux D, Fankhauser C. Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus[J]. Plant Mol Biol, 2010, 73(6): 687-695.
doi: 10.1007/s11103-010-9649-9 pmid: 20473552 |
[74] | Manohar M, Wang DK, Manosalva PM, et al. Members of the abscisic acid co-receptor PP2C protein family mediate salicylic acid-abscisic acid crosstalk[J]. Plant Direct, 2017, 1(5): e00020. |
[75] | Li H, Zhou YY, Qin XY, et al. Reconstitution of phytochrome A-mediated light modulation of the ABA signaling pathways in yeast[J]. Proc Natl Acad Sci U S A, 2023, 120(34): e2302901120. |
[76] |
Tokutomi S, Matsuoka D, Zikihara K. Molecular structure and regulation of phototropin kinase by blue light[J]. Biochim Biophys Acta, 2008, 1784(1): 133-142.
pmid: 17988963 |
[77] | Petroutsos D, Tokutsu R, Maruyama S, et al. A blue-light photoreceptor mediates the feedback regulation of photosynthesis[J]. Nature, 2016, 537(7621): 563-566. |
[78] | Ma LB, Li X, Zhao ZW, et al. Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature[J]. Plant Cell, 2021, 33(12): 3610-3620. |
[79] |
Ma DB, Li X, Guo YX, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proc Natl Acad Sci USA, 2016, 113(1): 224-229.
doi: 10.1073/pnas.1511437113 pmid: 26699514 |
[80] | Li YP, Shi YT, Li MZ, et al. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidop-sis[J]. Plant Cell, 2021, 33(11): 3555-3573. |
[81] | Song YH, Estrada DA, Johnson RS, et al. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49): 17672-17677. |
[82] | Podolec R, Lau K, Wagnon TB, et al. A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis[J]. Proc Natl Acad Sci USA, 2021, 118(6): e2017284118. |
[83] |
Hayes S, Sharma A, Fraser DP, et al. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis[J]. Curr Biol, 2017, 27(1): 120-127.
doi: S0960-9822(16)31329-X pmid: 27989670 |
[84] |
Liang T, Mei SL, Shi C, et al. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidop-sis[J]. Dev Cell, 2018, 44(4): 512-523.e5.
doi: S1534-5807(17)31079-1 pmid: 29398622 |
[85] | Yang Y, Zhang LB, Chen P, et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development[J]. EMBO J, 2020, 39(2): e101928. |
[86] | Ren YY, Jiao Y, Aldana JRV, et al. Ti: sapphire micro-structures by femtosecond laser inscription: guiding and luminescence properties[J]. Opt Mater, 2016, 58: 61-66. |
[87] | Huq E, Quail PH. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. EMBO J, 2002, 21(10): 2441-2450. |
[88] | Kidokoro S, Yoneda K, Takasaki H, et al. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature[J]. Plant Cell, 2017, 29(4): 760-774. |
[89] | Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177): 475-479. |
[90] | Wisniewski M, Nassuth A, Teulières C, et al. Genomics of cold hardiness in woody plants[J]. Crit Rev Plant Sci, 2014, 33(2-3): 92-124. |
[91] | Li XY, Ma MH, Shao WX, et al. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8(UV Resistance Locus 8), from birch and its role in ABA response[J]. Plant Sci, 2018, 274: 294-308. |
[92] | Eremina M, Unterholzner SJ, Rathnayake AI, et al. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants[J]. Proc Natl Acad Sci U S A, 2016, 113(40): E5982-E5991. |
[93] | Li H, Ding YL, Shi YT, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis[J]. Dev Cell, 2017, 43(5): 630-642.e4. |
[94] | Martínez C, Espinosa-Ruíz A, de Lucas M, et al. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth[J]. EMBO J, 2018, 37(23): e99552. |
[95] | Yang ZJ, Yan BQ, Dong HX, et al. BIC1 acts as a transcriptional coactivator to promote brassinosteroid signaling and plant growth[J]. EMBO J, 2021, 40(1): e104615. |
[96] | de Lucas M, Davière JM, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451(7177): 480-484. |
[97] | Liu X, Fu LS, Qin P, et al. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabi-dopsis thaliana[J]. Gene, 2019, 710: 210-217. |
[98] |
Fang HC, Dong YH, Yue XX, et al. MdCOL4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple[J]. Plant Cell Physiol, 2019, 60(5): 1055-1066.
doi: 10.1093/pcp/pcz023 pmid: 30715487 |
[99] |
Wang F, Wu N, Zhang LY, et al. Light signaling-dependent regulation of photoinhibition and photoprotection in tomato[J]. Plant Physiol, 2018, 176(2): 1311-1326.
doi: 10.1104/pp.17.01143 pmid: 29146776 |
[100] | Osterlund MT, Hardtke CS, Wei N, et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis[J]. Nature, 2000, 405(6785): 462-466. |
[101] | Bhatnagar A, Singh S, Khurana JP, et al. HY5-COP1: the central module of light signaling pathway[J]. J Plant Biochem Biotechnol, 2020, 29(4): 590-610. |
[102] | Xu DQ. COP1 and BBXs-HY5-mediated light signal transduction in plants[J]. New Phytol, 2020, 228(6): 1748-1753. |
[103] |
Wang H, Ma LG, Li JM, et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development[J]. Science, 2001, 294(5540): 154-158.
doi: 10.1126/science.1063630 pmid: 11509693 |
[104] |
Rizzini L, Favory JJ, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025): 103-106.
doi: 10.1126/science.1200660 pmid: 21454788 |
[105] |
Gangappa SN, Kumar SV. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms[J]. Cell Rep, 2017, 18(2): 344-351.
doi: S2211-1247(16)31753-3 pmid: 28076780 |
[106] | Chen DQ, Xu G, Tang WJ, et al. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5): 1657-1673. |
[107] |
Pruneda-Paz JL, Kay SA. An expanding universe of circadian networks in higher plants[J]. Trends Plant Sci, 2010, 15(5): 259-265.
doi: 10.1016/j.tplants.2010.03.003 pmid: 20382065 |
[108] |
Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms[J]. Annu Rev Genet, 2006, 40: 409-448.
pmid: 17094740 |
[109] | Creux N, Harmer S. Circadian rhythms in plants[J]. Cold Spring Harb Perspect Biol, 2019, 11(9): a034611. |
[110] |
Huang H, Nusinow DA. Into the evening: complex interactions in the Arabidopsis circadian clock[J]. Trends Genet, 2016, 32(10): 674-686.
doi: S0168-9525(16)30082-8 pmid: 27594171 |
[111] |
Wang L, Kim J, Somers DE. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription[J]. Proc Natl Acad Sci USA, 2013, 110(2): 761-766.
doi: 10.1073/pnas.1215010110 pmid: 23267111 |
[112] | Jang J, Lee S, Kim JI, et al. The roles of circadian clock genes in plant temperature stress responses[J]. Int J Mol Sci, 2024, 25(2): 918. |
[113] |
Sanchez SE, Rugnone ML, Kay SA. Light perception: a matter of time[J]. Mol Plant, 2020, 13(3): 363-385.
doi: S1674-2052(20)30036-8 pmid: 32068156 |
[114] |
Nohales MA, Kay SA. Molecular mechanisms at the core of the plant circadian oscillator[J]. Nat Struct Mol Biol, 2016, 23(12): 1061-1069.
doi: 10.1038/nsmb.3327 pmid: 27922614 |
[115] | Farinas B, Mas P. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation[J]. Plant J, 2011, 66(2): 318-329. |
[116] | Hsu PY, Devisetty UK, Harmer SL. Accurate timekeeping is controlled by a cycling activator in Arabidopsis[J]. eLife, 2013, 2: e00473. |
[117] |
Trösch R. A cold and a hot clock[J]. Nat Plants, 2023, 9: 677.
doi: 10.1038/s41477-023-01424-x pmid: 37211552 |
[118] | Li X, Ma DB, Lu SX, et al. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock[J]. Plant Cell, 2016, 28(11): 2755-2769. |
[119] |
Song YH, Shim JS, Kinmonth-Schultz HA, et al. Photoperiodic flowering: time measurement mechanisms in leaves[J]. Annu Rev Plant Biol, 2015, 66: 441-464.
doi: 10.1146/annurev-arplant-043014-115555 pmid: 25534513 |
[120] | Li X, Liu CC, Zhao ZW, et al. COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis[J]. Plant Cell, 2020, 32(10): 3139-3154. |
[121] | Kahle N, Sheerin DJ, Fischbach P, et al. COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling[J]. Plant J, 2020, 104(4): 1038-1053. |
[122] | Wang P, Cui X, Zhao CS, et al. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response[J]. J Integr Plant Biol, 2017, 59(2): 78-85. |
[123] | Martín G, Rovira A, Veciana N, et al. Circadian waves of transcriptional repression shape PIF-regulated photoperiod-responsive growth in Arabidopsis[J]. Curr Biol, 2018, 28(2): 311-318.e5. |
[124] | Nakamichi N, Kiba T, Henriques R, et al. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock[J]. Plant Cell, 2010, 22(3): 594-605. |
[125] |
Alabadí D, Oyama T, Yanovsky MJ, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531): 880-883.
doi: 10.1126/science.1061320 pmid: 11486091 |
[126] |
Huang W, Pérez-García P, Pokhilko A, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator[J]. Science, 2012, 336(6077): 75-79.
doi: 10.1126/science.1219075 pmid: 22403178 |
[127] |
Martínez-García JF, Huq E, Quail PH. Direct targeting of light signals to a promoter element-bound transcription factor[J]. Science, 2000, 288(5467): 859-863.
pmid: 10797009 |
[128] |
Liu XL, Covington MF, Fankhauser C, et al. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway[J]. Plant Cell, 2001, 13(6): 1293-1304.
pmid: 11402161 |
[129] |
Huang H, Alvarez S, Bindbeutel R, et al. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry[J]. Mol Cell Proteomics, 2016, 15(1): 201-217.
doi: 10.1074/mcp.M115.054064 pmid: 26545401 |
[130] |
Nieto C, López-Salmerón V, Davière JM, et al. ELF3-PIF4 interaction regulates plant growth independently of the evening complex[J]. Curr Biol, 2015, 25(2): 187-193.
doi: S0960-9822(14)01418-3 pmid: 25557667 |
[131] | Nusinow DA, Helfer A, Hamilton EE, et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth[J]. Nature, 2011, 475(7356): 398-402. |
[1] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[2] | 钱静洁, 林苏梦, 张冬平, 高勇. 光敏色素互作因子参与生长素调控的植物生长发育[J]. 生物技术通报, 2022, 38(10): 29-33. |
[3] | 崔红利, 陈军, 侯义龙, 吴海歌, 秦松. 真核微藻蓝光受体及其功能研究进展[J]. 生物技术通报, 2017, 33(4): 51-62. |
[4] | 邵宏波. 高等植物开花时程的基因调控(I)[J]. , 2001, 0(06): 12-17. |
[5] | 朱遐. 保持细胞内节律的两种蛋白[J]. , 1996, 0(03): 20-20. |
[6] | 孙国凤. 今春销售高速高灵敏的新DNA序列分析仪[J]. , 1995, 0(06): 24-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||