[1] |
Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods[J]. Exp Mol Med, 2020, 52(9): 1428-1442.
|
[2] |
Ahmed R, Zaman T, Chowdhury F, et al. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues[J]. Int J Mol Sci, 2022, 23(6): 3042.
|
[3] |
Lei YL, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]. J Hematol Oncol, 2021, 14(1): 91.
|
[4] |
Moses L, Pachter L. Museum of spatial transcriptomics[J]. Nat Methods, 2022, 19(5): 534-546.
doi: 10.1038/s41592-022-01409-2
pmid: 35273392
|
[5] |
Lake BB, Menon R, Winfree S, et al. An atlas of healthy and injured cell states and niches in the human kidney[J]. Nature, 2023, 619(7970): 585-594.
|
[6] |
Galeano Niño JL, Wu HR, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer[J]. Nature, 2022, 611(7937): 810-817.
|
[7] |
Li QY, Zhang XY, Ke RQ. Spatial transcriptomics for tumor heterogeneity analysis[J]. Front Genet, 2022, 13: 906158.
|
[8] |
Mazzei M, Vascellari M, Zanardello C, et al. Quantitative real time polymerase chain reaction(RT-qPCR)and RNAscope in situ hybridization(RNA-ISH)as effective tools to diagnose feline herpesvirus-1-associated dermatitis[J]. Vet Dermatol, 2019, 30(6): 491.
|
[9] |
Eng CH L, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]. Nature, 2019, 568(7751): 235-239.
|
[10] |
Zhou XY, Karpur A, Luo LJ, et al. StarMap for category-agnostic keypoint and viewpoint estimation[C]// European Conference on Computer Vision. Cham: Springer, 2018: 328-345.
|
[11] |
Fürth D, Hatini V, Lee JH. In situ transcriptome accessibility sequencing(INSTA-seq)[J]. bioRxiv, 2019. DOI: 10.1101/722819.
|
[12] |
Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nat Biotechnol, 2021, 39(3): 313-319.
doi: 10.1038/s41587-020-0739-1
pmid: 33288904
|
[13] |
Kephart M. A 10x visium approach: a spatial RNA-Seq analysis of renal tissue in Peromyscus eremicus[D]. ProQuest Dissertations Publishing, 2023.
|
[14] |
Luoma J, Nastou K, Ohta T, et al. S1000: a better taxonomic Name corpus for biomedical information extraction[J]. Bioinformatics, 2023, 39(6): btad369.
|
[15] |
Xia KK, Sun HX, Li J, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J]. Dev Cell, 2022, 57(10): 1299-1310.e4.
|
[16] |
Su G, Qin XY, Enninful A, et al. Spatial multi-omics sequencing for fixed tissue via DBiT-seq[J]. STAR Protoc, 2021, 2(2): 100532.
|
[17] |
Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data[J]. Nat Biotechnol, 2015, 33(5): 495-502.
doi: 10.1038/nbt.3192
pmid: 25867923
|
[18] |
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biol, 2018, 19(1): 15.
doi: 10.1186/s13059-017-1382-0
pmid: 29409532
|
[19] |
Hu J, Li XJ, Coleman K, et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network[J]. Nat Methods, 2021, 18(11): 1342-1351.
doi: 10.1038/s41592-021-01255-8
pmid: 34711970
|
[20] |
Zhao E, Stone MR, Ren X, et al. Spatial transcriptomics at subspot resolution with BayesSpace[J]. Nat Biotechnol, 2021, 39(11): 1375-1384.
doi: 10.1038/s41587-021-00935-2
pmid: 34083791
|
[21] |
Scrucca L, Fop M, Murphy TB, et al. Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models[J]. R J, 2016, 8(1): 289-317.
pmid: 27818791
|
[22] |
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities[J]. Sci Rep, 2019, 9(1): 5233.
doi: 10.1038/s41598-019-41695-z
pmid: 30914743
|
[23] |
Ahmed M, Seraj R, Islam SMS. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
|
[24] |
Pham D, Tan X, Xu J, et al. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues[J]. bioRxiv, 2020. DOI: 10.1101/2020.05.31.125658.
|
[25] |
Pan V, Schreiber R. An improved Newton iteration for the generalized inverse of a matrix, with applications[J]. SIAM J Sci Stat Comput, 1991, 12(5): 1109-1130.
|
[26] |
Chung MK. Gaussian kernel smoothing[EB/OL]. 2020: arXiv: 2007.09539. http://arxiv.org/abs/2007.09539.
|
[27] |
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(11): 2274-2282.
|
[28] |
Hurtik P, Madrid N. Bilinear interpolation over fuzzified images: enlargement[C]// 2015 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE). Istanbul, Turkey. Piscataway, NJ: IEEE, 2015: 1-8.
|
[29] |
Reynolds D. Gaussian mixture models[M]// Li SZ, Jain A. Encyclopedia of Biometrics. Bostonm MA: Springer, 2009: 659-663.
|
[30] |
De Meo P, Ferrara E, Fiumara G, et al. Generalized louvain method for community detection in large networks[C]// 2011 11th International Conference on Intelligent Systems Design and Applications, 2011: 88-93.
|
[31] |
Xu C, Jin XY, Wei SR, et al. DeepST: identifying spatial domains in spatial transcriptomics by deep learning[J]. Nucleic Acids Res, 2022, 50(22): e131.
doi: 10.1093/nar/gkac901
pmid: 36250636
|
[32] |
Chen YM, Zhou SY, Li M, et al. STEEL enables high-resolution delineation of spatiotemporal transcriptomic data[J]. Brief Bioinform, 2023, 24(2): bbad068.
|
[33] |
Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data[J]. Database, 2019, 2019: baz046.
|
[34] |
Perkel DJ, Hestrin S, Sah P, et al. Excitatory synaptic currents in Purkinje cells[J]. Proc R Soc Lond B, 1990, 241(1301): 116-121.
|
[35] |
Lin YC, Hsu CC H, Wang PN, et al. The relationship between zebrin expression and cerebellar functions: insights from neuroimaging studies[J]. Front Neurol, 2020, 11: 315.
|