]*>","")" />
张平;汪越胜;杨广笑;刘东;肖庆;杨曦;常俊丽;陈明洁;何光源;
摘要: 关联规则挖掘技术是寻找基因间关系的有效手段,但现有算法未针对高通量生物数据的特点进行优化,而存在着效率低下等缺点。提出的MAGO-FP算法,使用Gene Ontology(GO)的概念分层结构,通过对FP-Growth算法的扩展,具有一定的性能优势。在此基础上,应用该算法分析了一组由S.cerevisiae酵母菌cDNA微阵列芯片产生的实验数据,发现了一些候选关联规则。并针对其中一些重要的关联规则,通过相关文献证实了其真实性,表明该算法在基因表达分析等研究中具有应用价值。