生物技术通报, 2023, 39(4): 236-245 doi: 10.13560/j.cnki.biotech.bull.1985.2022-1051

研究报告

低温胁迫下番茄SlMYB96的功能分析

胡明月,1, 杨宇1, 郭仰东2, 张喜春,1

1.北京农学院植物科学技术学院 北京市蔬菜遗传育种与生物技术实验室,北京 102206

2.中国农业大学园艺学院,北京 100094

Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress

HU Ming-yue,1, YANG Yu1, GUO Yang-dong2, ZHANG Xi-chun,1

1. College of Plant Science and Technology, Beijing University of Agriculture, Beijing Laboratory of Vegetable Genetics, Breeding and Biotechnology, Beijing 102206

2. College of Horticulture, China Agricultural University, Beijing 100094

通讯作者: 张喜春,男,博士,教授,硕士生导师,研究方向:蔬菜遗传育种与生物技术;E-mail:xichunzhang@sina.com

责任编辑: 李楠

收稿日期: 2022-08-23  

基金资助: 北京农学院科技发展基金(纵向)(KYZX-2022010)

Received: 2022-08-23  

作者简介 About authors

胡明月,女,硕士,研究方向:蔬菜遗传育种;E-mail:mingyuehu96@163.com

摘要

研究SlMYB96在抗寒中的作用,为研究番茄的抗寒分子机制及选育番茄抗寒品种提供理论依据。以番茄cDNA为模板克隆SlMYB96,利用生物信息软件分析该基因的理化性质,利用实时荧光定量(RT-qPCR)技和病毒诱导的基因沉默(virus induced gene silencing, VIGS)技术研究低温胁迫处理后SlMYB96的表达特征及其在番茄抗寒过程中的作用。结果表明,SlMYB96在番茄的根、茎、叶、花和果实中均有表达,且在花中表达水平最高;随着4℃低温处理时间的增加,SlMYB96的表达量升高,其中在低温处理3 h时表达量达到最大。借助TRV病毒介导的基因沉默技术将SlMYB96沉默,对野生型组(WT)、空载组(CK)以及基因瞬时沉默组(pTRV-MYB96)3组不同类型番茄植株进行低温胁迫后,外观性状结果显示,在4℃低温处理5 d后,与野生型组(WT)、空载组(CK)相比,基因瞬时沉默组(pTRV-MYB96)植株表现出更为明显的冷害症状;生理水平鉴定结果表明,4℃低温处理番茄幼苗5 d时,基因瞬时沉默组(pTRV-MYB96)植株叶绿素、丙二醛、可溶性蛋白含量和超氧化物歧化酶活性明显变低,而可溶性糖、相对电导率、游离脯氨酸含量以及过氧化氢酶、过氧化物酶活性增加,说明基因瞬时沉默组(pTRV-MYB96)植株与野生型组(WT)、空载组(CK)相比抗寒性较低。证明SlMYB96能够响应低温胁迫,将其沉默后番茄植株抗寒性降低。

关键词: 番茄; SlMYB96; 功能分析; 抗寒性

Abstract

This study is to discuss the function of SlMYB96 in tomato under cold resistance, aiming to provide theoretical basis for the molecular mechanism of cold resistance and breeding of tomato under cold resistance. The SlMYB96 gene was cloned using tomato cDNA as the template. Then the physical and chemical properties of the gene were analyzed by bioinformatic software, and the expression features of SlMYB96 and its role in cold resistance in tomato was studies by real-time quantitative fluorescence(RT-qPCR)technology and virus-induced gene silencing(VIGS)technology. The results showed that SlMYB96 was expressed in the roots, stems, leaves, flowers, and fruit of tomato, with the highest expression in the flowers. And the expression of SlMYB96 increased with increasing time of 4℃ cold treatment, where expression reached the maximum at three hour of low temperature treatment. With the help of VIGS the SlMYB96 gene was silenced. Three different types of tomato plants in wild-type group(WT), empty load group(CK)and gene transient silencing group(pTRV-MYB96)were treated with low temperature. And the appearance traits showed that plants in the transient gene silencing group(pTRV-MYB96)after cold treatment at 4℃ for five days, presented more obvious cold damage symptoms compared with the wild-type group(WT)and the empty-load group(CK). The identification results of the physiological level showed that when tomato seedlings were treated with 4℃ at low temperature for five days, the content of chlorophyll, malondialdehyde, soluble protein and superoxide dismutase activity of the gene transient silencing group(pTRV-MYB96)plants were significantly lower, while the activity of soluble sugar, relative conductivity, free proline content, catalase and peroxidase increased. When tomato seedlings treated under cold 4℃ for five days, chlorophyll, malondialdehyde, soluble protein content and superoxide dismutase activity were significantly lower in gene transient silent group(pTRV-MYB96), while soluble sugar, relative conductivity, free proline content and catalase and peroxidase activity increased, indicating that gene transient silent group(pTRV-MYB96)plants had lower cold resistance compared with wild-type group(WT)and empty load group(CK). It is confirmed that SlMYB96 gene can respond to cold stress and reduce cold resistance after silencing.

Keywords: tomato; SlMYB96; gene function analysis; cold hardiness

PDF (4360KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245 doi:10.13560/j.cnki.biotech.bull.1985.2022-1051

HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress[J]. Biotechnology Bulletin, 2023, 39(4): 236-245 doi:10.13560/j.cnki.biotech.bull.1985.2022-1051

番茄(Solanum lycopersicum Mill.)是一种在世界范围内广泛栽培的蔬菜作物,低温胁迫会影响番茄整个生长过程,造成根系生理功能下降、幼苗弱小、生长缓慢甚至停止生长等现象,严重时将发生萎缩、死亡[1],番茄的生长、产量和品质受到威胁,带来巨大的经济损失[2]。因此,发掘番茄抗寒相关基因并研究其抗寒的分子机制,培育番茄抗寒新品种,对于提高番茄产量具有重大意义。

植物中分布最广泛的一类MYB转录因子是R2R3-MYB蛋白,对植物生长发育的各阶段均起决定性作用,如参与合成次生代谢物质、响应多个逆境胁迫、参与植物的激素应答等[3]

吴小亲[4]通过对番茄SlMYB64过表达植株的研究发现,其参与番茄叶片及花的发育,为研究基因在花粉发育中的功能奠定了基础。陈静[5]研究结果显示,番茄SlMYB1R-1参与番茄干旱和盐胁迫的响应,在非生物胁迫中发挥负调控作用。陈丽琛[6]研究发现,番茄SlMYB102参与种子萌发的调控,且能提高植株对NaCl胁迫的抗性。2018年Cui等[7]以拟南芥(Arabidopsis thaliana L.)转录因子R2R3-MYBS(AtMYBS)的同缘关系为基础,在番茄基因组中鉴定24个R2R3-MYB转录因子。同年张旭等[8]发现番茄SlMYB102过表达株系中,种子萌发速率明显升高,而植株高度、叶面积、地上部及地下部的鲜量均显著降低。简伟[9]研究证实番茄SlMYB75转录因子能够提高果实花青素含量,改善果实成熟过程中部分品质属性,在采后果实抗病耐贮藏方面作用显著。张露月[10]研究发现低温诱导了番茄SlMYB15的表达,且是低温抗性的一个正向调控因子,HY5-MYB15-CBFs转录级联可增强番茄低温抗性。刁鹏飞[11]通过研究SlMYB41转录因子过表达株系和RNAi转基因株系,发现其不仅是低温诱导表达的负调控因子,同时高温和NaCl也会增强表达。Wang 等[12]研究了番茄SlMYB102过表达可以提高植株抗寒性,同时不会伤害幼苗生长。沈峰屹[13]利用生物信息学分析,鉴定出127个番茄MYB转录因子,对其中几个进行不同胁迫处理发现,低温胁迫下SlMYB7表达量上升;干旱胁迫处理时SlMYB10表达量相对较高;沉默SlMYB14后,植株抗旱性和耐盐性减弱。Chen等[14]发现番茄SlMYB55影响脱落酸(ABA)的生物合成,通过ABA介导的信号转导途径调节干旱和盐类响应,直接或间接影响与干旱和盐类响应、开花时间、萼片大小和花序相关的基因表达,从而调节胁迫耐受性和花序发育。贾梦玫等[15]通过酵母双杂交技术进行番茄SlMYB102互作蛋白的初步筛选,进一步探究SlMYB102参与低温胁迫的调控机制。研究结果显示,MYB转录因子在番茄各个时期参与多种生理反应,响应各种生物胁迫及非生物胁迫,影响番茄整个生长发育过程,为抗逆育种提供了新的技术支持。

本研究利用同源克隆的方法从番茄cDNA中克隆得到SlMYB96,通过荧光定量PCR方法分析该基因的组织表达特异性和不同低温处理时间条件下的表达模式,同时构建该基因的VIGS瞬时沉默体载体,并通过农杆菌介导侵染番茄获得沉默植株,通过对番茄沉默植株抗寒性生理指标的测定,进一步研究SlMYB96的功能,以期为进一步揭示番茄植株抗寒的分子机制以及为选育番茄抗寒品种提供理论依据。

1 材料与方法

1.1 材料

1.1.1 试验材料

所用番茄试验材料为实验室自存俄罗斯品种‘Bolgogragsky’,编号25。

1.1.2 菌株及试剂

大肠杆菌DH5α感受态细胞购自上海昂羽生物技术有限公司,cDNA第一链合成试剂盒购于北京天根生化科技有限公司,无缝克隆试剂盒及各种限制性内切酶购于博迈德公司,TB Green Premix Ex Tap II及Prime STAR Max Premix(2X)购自宝生物(TaKaRa)工程(大连)有限公司。上海生工生物工程股份有限公司(https://www.sangon.com/)进行引物合成及测序。

1.2 方法

1.2.1 材料种植及胁迫处理

在25℃暗培养条件下催生番茄种子3-5 d,发芽后将其播种到穴盘中,于12 000 lx光照强度,25℃光照16 h,20℃黑暗8 h,60%湿度条件下培养。

当番茄幼苗长到四叶一心时,将其置于4℃光照16 h,黑暗8 h,60%湿度条件下进行低温胁迫处理。

1.2.2 番茄总RNA的提取与cDNA第一链的合成

采用传统Trizol试剂在超净工作台(北京德天佑科技发展有限公司JJT-1300型)提取番茄叶片总RNA。使用天根公司试剂盒合成第一链cDNA,反应体系为5×Fast King-RT Super Mix 4 µL、总RNA 1 µL、ddH2O 15 µL。混匀后42℃ 15 min,95℃ 3 min,在PCR仪(美国Bio-Rad公司,C1000 Thermal Cycler)上进行。

1.2.3 SlMYB96的克隆及序列分析

根据番茄基因组数据库(https://solgenomics.net/)发布番茄SlMYB96的CDS序列设计正反向引物(表1),以番茄cDNA为模板,使用Prime STAR高保真酶进行PCR扩增。扩增程序为98℃ 30 s;98℃ 10 s,52-62℃ 30 s,72℃ 30 s,28个循环;72℃ 2 min。扩增产物进行1%琼脂糖凝胶电泳后,用凝胶成像系统(美国Alpha Innotech公司,AlphaImager HP)观看,将目的条带参照北京艾德莱胶回收试剂盒进行纯化回收。并连接到pLB Vector载体,转化大肠杆菌DH5α感受态细胞。挑取单克隆进行菌落PCR,将PCR产物进行1%琼脂糖凝胶电泳,把扩增出目的条带的菌液取200 µL送至生工生物公司测序。将测序结果完全正确的菌液取200 µL于5 mL加氨苄青霉素的培养基中37℃,200 r/min培养12 h,参照北京博迈德生物质粒小量快速提取试剂盒提取。

表1   引物列表

Table 1  List of primers

引物名称
Primer name
引物序列
Primer sequence(5'-3')
MYB96-FATGGGTAGAGTCCCTTGTTGTG
MYB96-RCTAGAAAAGTTGTGGAGTTTCATCAAAAGATATCA
Y96-FTGCAGGCTAAGATGGACAAACTACC
Y96-RCTGTTCTCTCTGGCAGATACGAAGC
Actin-FTTGCTGACCGTATGAGCAAG
Actin-RGGACAATGGATGGACCAGAC
V96-FTCTTCATGTGATGGGACTCCAAA
V96-RCTAGAAAAGTTGTGGAGTTTCATCAAAAG
+V96-FAAGGTTACCGAATTCTCTAGATCTTCATGTGATGG-
GACTCCAA
+V96-RTGTCTTCGGGACATGCCCGGGCTAGAAAAGTTGT-
GGAGTTTCATCAAA

注:下划线为限制性内切酶的序列

Note: The sequence of the restriction enzyme is underlined

新窗口打开| 下载CSV


利用ProtParam在线软件(http://web.expasy.org/protparam/)分析蛋白分子量与等电点。利用SOPMA分析其疏水性。利用TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)在线软件预测跨膜结构域。运用SignalP(http://www.cbs.dtu.dk/services/SignalP)在线程序对该蛋白质进行信号肽预测分析。

1.2.4 SlMYB96的表达模式分析

利用实时荧光定量PCR方法检测SlMYB96在低温胁迫处理0、1、3、5、7、9、12和24 h的表达情况。根据SlMYB96和内参基因Actin序列(表1),设计荧光定量PCR引物(表1),利用TB Green Premix Ex Tap II酶在荧光定量PCR仪(美国Bio-Rad公司,Bio-Rad CFX 96 T)上操作,反应体系为cDNA 2 µL、上游引物1 µL、下游引物1 µL、TB Green Premix Ex Tap II 9 µL和ddH2O 7 µL。反应程序为95℃ 30 s;95℃ 5 s,60℃ 30 s,39个循环;95℃ 10 s,65℃ 0.05 s,95℃ 0.5 s。每个样本进行3个技术重复。

1.2.5 SlMYB96的VIGS载体构建

利用Sol Genomics Network在线软件设计SlMYB96 VIGS特异性表达引物(表1),采用PCR方法对目的片段扩增,扩增产物进行1%琼脂糖凝胶电泳回收,回收方法按照试剂盒进行,将纯化回收的目的基因片段转化大肠杆菌DH5α,将菌液送去测序,将测序正确的菌液提取质粒。对测序正确质粒和TRV2质粒用Xba I和Sma I进行双酶切,用T4连接酶连接、转化,并进行菌落PCR鉴定及测序,将测序正确的菌液提取质粒,-20℃保存,用于后续试验。回收、鉴定、测序方法同1.2.3。

1.2.6 农杆菌介导的VIGS侵染番茄及阳性植株鉴定

将含有pTRV1、pTRV2、pTRV2-MYB96质粒的GV3101农杆菌菌液培养至OD600=0.6-1.0。4 000 r/min离心8 min收集菌体,配制pH为5.6的侵染液(含10 mmol/L MES, 10 mmol/L MgCl2, 200 μmol/L AS),重悬菌体,使得OD600调整为1.0。等体积混合pTRV1和pTRV2、pTRV2-MYB96侵染液,黑暗静置4 h。用注射器注射3-4片真叶番茄。侵染后,于20℃,光照16 h,黑暗8 h,60%相对湿度条件下培养。侵染株数分别为野生型组(WT)50株,空载组(CK)50株,SlMYB96沉默组50株。

侵染10 d后,取野生型组(WT)、空载组(CK)、SlMYB96沉默组3组植株叶片提取RNA,每个样本取3个技术重复,测定浓度后选合适RNA进行反转录cDNA,用PCR方法验证阳性植株。

1.2.7 低温胁迫下番茄植株的生理生化指标测定

将野生型组(WT)、空载组(CK)、SlMYB96瞬时沉默组番茄植株置于培养箱4℃,光照16 h,黑暗8 h,60%湿度的培养条件下培养。低温条件下培养5 d后,上午8:00取样,进行各项生理生化指标测定。其中,叶绿素含量测定参照分光光度法[16],相对电导率采用电导法[17]测定,丙二醛(malondialdehyde, MDA)和可溶性糖含量参照《植物生理学实验教程》[18]和Kong等[19]测定,脯氨酸含量的测定采用磺基水杨酸[20]的方法,可溶性蛋白含量采用考马斯亮蓝法[21]测定,超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)、过氧化氢酶(catalase, CAT)活性依据试剂盒方法测定。

2 结果

2.1 SlMYB96的克隆及序列分析

以番茄cDNA为模板进行扩增(图1),获得一条清晰条带,且与目的片段大小一致,确定为SlMYB96的CDS序列。

图1

图1   SlMYB96的扩增

M:BM2000 DNA marker;1-3:3个重复

Fig. 1   PCR amplification of SlMYB96

M: BM2000 DNA marker. 1-3: Three repeats


SlMYB96的CDS全长为1 008 bp,编码335个氨基酸,蛋白相对分子量为37.40 kD,理论等电点为5.73。SlMYB96平均亲水性为-0.723,属于亲水性蛋白(图2-A)。保守结构域分析(图2-B)发现,SlMYB96不仅含有Myb-DNA结合结构域,同时包含PLN03212、REB1和SANT结构域。SlMYB96蛋白的二级结构预测(图2-C)表明,SlMYB96的α-螺旋为32.84%,延伸链为9.85%,β-转角为2.99%,无规则卷曲为54.33%。SlMYB96的三级结构预测图(图2-D)表示SlMYB96不稳定。

图2

图2   SlMYB96的序列分析

A:SlMYB96亲水性分析;B:SlMYB96保守结构域分析;C:SlMYB96二级结构;D:SlMYB96三级结构

Fig. 2   Sequence analysis of SlMYB96

A: Hydrophilicity analysis of SlMYB96 protein. B: Conserved domain analysis of SlMYB96. C: Secondary structure of SlMYB96 protein. D: Tertiary structure of SlMYB96 protein


2.2 SlMYB96的表达模式分析

运用荧光定量PCR技术分析番茄6个不同组织部位SlMYB96的表达水平(图3-A),与营养器官相比,SlMYB96在生殖器官表达量较高。在营养器官叶中的相对表达水平最高,在生殖器官花中的相对表达水平最高,SlMYB96是组织差异性表达基因。

图3

图3   SlMYB96的表达模式分析

A:不同组织中SlMYB96的表达模式分析;B:低温胁迫下SlMYB96的根茎叶表达模式分析。不同小写字母表示在P=0.05水平差异显著,下同

Fig. 3   Expression pattern analysis of SlMYB96

A: Expression pattern analysis of SlMYB96 in different tissues. B: Expression pattern analysis of SlMYB96 in roots, stems and leaves under low temperature stress. Different lowercase letters indicate significant differences in at P=0.05. The same below


此外,经4℃低温处理的根茎叶中SlMYB96受诱导表达,其中,根的诱导表达更为明显,3 h达到最大值,提高16倍。茎在5 h表达量开始受抑制,而叶则在4 h受抑制(图3-B)。说明SlMYB96与番茄抗寒机制有直接关系。

2.3 番茄VIGS载体的构建

参照1.2.6构建VIGS载体,将SlMYB96的CDS全长与pTRV2连接,构建载体pTRV2-MYB96,经菌液扩增(图4-A)检测阳性菌株,并测序(图4-B),提取质粒保存备用。

图4

图4   pTRV2-MYB96载体的构建

A:pTRV2-MYB96载体的酶切验证;B:pTRV2-MYB96载体序列比对;M:BM2000 DNA marker;1-3:3个重复

Fig. 4   Vector construction of pTRV2-MYB96

A: Enzyme digesting verification of pTRV2-MYB96 vector. B: pTRV2-MYB96 vector sequence alignment. M: BM2000 DNA marker.1-3: Three repeats


2.4 农杆菌介导的VIGS基因沉默阳性植株验证

将(pTRV1、pTRV2、pTRV2-MYB96)质粒转化农杆菌并以野生型/空载组/试验组侵染4-5叶一心的番茄叶片,10 d后取样,运用RT-PCR检测阳性植株,结果(图5)表明,野生型(WT)30株,携带pTRV1+pTRV2空载(CK)39株,携带pTRV1+pTRV2-MYB96试验组33株。

图5

图5   TRV病毒检测

M:BM2000 DNA marker;1-2:WT;3-6、8、9:TRV阳性;7、10:TRV阴性

Fig. 5   TRV virus detection

M: BM2000 DNA marker. 1-2: WT. 3-6, 8, 9: TRV positive. 7, 10: TRV negative


2.5 低温胁迫下番茄植株的表型变化和生理生化指标测定

2.5.1 低温胁迫下番茄植株的表型变化

4℃低温处理前,野生型株(WT)、空载株(CK)以及基因瞬时沉默(pTRV2-MYB96)3组不同类型植株的茎秆直立挺拔,叶片伸展且色泽鲜艳,生长状况良好(图6)。经4℃低温处理5 d后,野生型组(WT)番茄植株茎秆略有弯曲,叶片颜色变浅,幼苗整体没有明显损伤;空载组(CK)番茄植株茎秆略微倾斜,幼苗叶片卷曲呈褐色且带有少量冻斑,同时,叶片边缘出现黑色冻伤现象;基因瞬时沉默组(pTRV2-MYB96)植株茎秆倾斜,叶柄严重下垂,叶片出现萎蔫并呈现水浸状。从表型结果观察可知,SlMYB96沉默后,番茄植株对低温的耐受性降低。

图6

图6   VIGS沉默番茄植株表型观察

A-C:25℃野生组、空载组、瞬时沉默植株;D-F:4℃处理5 d后野生组、空载组、瞬时沉默植株

Fig. 6   Phenotypic observation of tomato plants silenced by VIGS

A-C: 25℃ wild group, no load group, instantaneous silent plants. D-F: After treatment at 4℃ for 5 d, the wild group, the no-load group and the instantaneous silent plants were isolated


2.5.2 低温胁迫下番茄植株的生理生化指标测定

25℃时,空载组(CK)叶绿素含量最高,其次是野生型组(WT),基因瞬时沉默组(pTRV2-MYB96)叶绿素含量最低(图7-A)。经4℃低温处理5 d后,3组植株的叶绿素含量均发生下降,但基因瞬时沉默组(pTRV2-MYB96)植株的叶绿素含量整体相比野生型组(WT)、空载组(CK)植株而言含量较高。说明植株遭受低温胁迫时,叶片受到不同程度的损伤。

图7

图7   低温胁迫下番茄植株的生理生化指标测定

A:叶片叶绿素含量;B:叶片相对电导率;C:叶片丙二醛含量;D:叶片游离脯氨酸含量;E:叶片可溶性糖含量;F:叶片可溶性蛋白含量;G:叶片过氧化氢酶活性;H:叶片超氧化物酶活性;I:叶片过氧化物酶活性

Fig. 7   Determination of physiological and biochemical indexes of tomato plants under low temperature stress

A: Chlorophyll content in leaves. B: Blade relative conductivity in leaves. C: Malondialdehyde content in leaves. D: Determination of free proline content in leaves. E: Soluble sugar content in leaves. F: Soluble protein in leaves. G: Catalase activity in leaves. H: Superoxide dismutase activity in leaves. I: Peroxidase activity in leaves


25℃时,3组植株中基因瞬时沉默组的叶片相对电导率最高,其次是野生型组(WT),空载组(CK)最低(图7-B)。经低温处理5 d后,3组植株的叶片相对电导率均明显增加,其中空载组(CK)最高,基因瞬时沉默组居于第二。表明空载组(CK)、基因瞬时沉默组植株的膜功能受损较为严重。

丙二醛作为细胞膜的另一个重要的指标,当植物受到伤害时,会出现膜脂过氧化现象。植物低温处理前,3组植株中基因瞬时沉默组(pTRV2-MYB96)的丙二醛含量最高,空载(CK)最低。低温处理后,空载组(CK)丙二醛含量升高,其他2组含量均降低,且基因瞬时沉默组(pTRV2-MYB96)丙二醛含量降低不明显(图7-C)。

在25℃条件下,野生型(WT)植株的脯氨酸含量最高,其次是基因瞬时沉默组,空载(CK)植株最低。但4℃低温处理5 d后,每组植株的脯氨酸的含量明显增加,尤其是在基因瞬时沉默组植株中最为明显,同时低温处理后,野生型组(WT)植株的脯氨酸含量反而最低,基因瞬时沉默组最高,与低温前各组植株脯氨酸含量呈相反结果(图7-D)。

低温处理前3组植株中,基因瞬时沉默植株的可溶性糖含量最高,空载(CK)最低。当受到低温胁迫时,3组植株的可溶性糖含量明显增加,其中,空载(CK)组变化最高,几乎成倍增长;野生型(WT)也较低温处理前有所增长;而基因瞬时沉默组(pTRV2-MYB96)植株的可溶性糖含量因为发生基因沉默并未出现明显增强,但也比低温处理前更高(图7-E)。可能是因为基因瞬时沉默组(pTRV2-MYB96)植株中SlMYB96的沉默而使植株体内自身无法合成更多的可溶性糖抵御寒冷,致使植株受冷害严重。说明SlMYB96沉默后,植株不耐低温。

低温处理前,3组植株的可溶性蛋白含量中野生型(WT)最高,其次是基因瞬时沉默组(pTRV2-MYB96),空载(CK)组最低(图7-F)。但是经低温胁迫处理5 d后,3组植株叶片的可溶性蛋白含量均出现了下降的趋势,其中,空载(CK)组含量降低不明显,但整体来讲,低温处理后的3组植株中可溶性蛋白含量最高的依然是野生型(WT),基因瞬时沉默组(pTRV2-MYB96)含量最低,可能是因为植株受到低温伤害时,蛋白合成受到抑制;抑或是因为SlMYB96发生沉默,植株体内无法合成更多的可溶性蛋白,因而耐冷性相比而言更低。

低温处理前3组植株中野生型(WT)组的过氧化氢酶(CAT)活性最高,其次是空载(CK)组,基因瞬时沉默组(pTRV2-MYB96)植株的活性最低。4℃低温处理5 d后,3组植株的过氧化氢酶(CAT)活性均显著升高,其中野生型组(WT)的活性最高,其次为基因瞬时沉默组(pTRV2-MYB96),空载组(CK)的活性最低(图7-G)。

4℃低温处理前,3组植株中空载组(CK)的超氧化物歧化酶(SOD)活性最高,其次是野生型组(WT),基因瞬时沉默组(pTRV2-MYB96)活性最低。4℃低温处理5 d后,3组植株的超氧化物歧化酶(SOD)活性显著下降,其中基因瞬时沉默组(pTRV2-MYB96)植株活性最大,其次为野生型组(WT),空载组(CK)最低(图7-H)。总之,基因瞬时沉默组(pTRV2-MYB96)植株的下降幅度比其他2组较小。

3组植株在4℃低温处理前,空载组(CK)的过氧化物酶(POD)活性最高,其次是基因瞬时沉默组(pTRV2-MYB96),野生型组(WT)活性最低。4℃低温处理后,野生型组(WT)和基因瞬时沉默组(pTRV2-MYB96)植株的过氧化物酶(POD)活性呈现上升趋势,原因可能是外界低温刺激促进了过氧化物酶(POD)的合成(图7-I)。

3 讨论

预防和抵御植株冷害,需要了解植物基因组水平上对非生物胁迫的反应,目前已有诸多关于基因参与植物冷胁迫的研究,但很多相关抗寒机制仍在摸索当中。已有相关研究表明,MYB蛋白直接或间接参与调节响应非生物胁迫,除此之外,也发现MYB蛋白调控并作用于其下游,具体包括Pi转运蛋白、脱落酸合成蛋白、活性氧清除蛋白、细胞扩增及其他应激诱导蛋白[22]

植物受到低温胁迫时,膜脂的形态会发生改变,增加膜的通透性,离子外流,细胞膜上的各种酶活性发生紊乱,与此同时增加了植物体内的活性氧和自由基含量,叶绿素的含量减少,某些次生代谢物质发生累积[23-24]。出现这些现象主要是因为植物生物膜系统受到低温伤害,膜脂出现过氧化作用,降低或破坏各种酶的活性,阻碍植物的正常生长,削弱甚至破坏植物的防御系统[25]

膜脂过氧化作用属于一系列自由基反应,其发生在不饱和脂肪酸中,它会氧化细胞膜上的结构骨架磷脂分子,使细胞膜受到破坏,同时只有在特定条件下这种现象才会发生。作为膜脂过氧化最终分解产物之一的丙二醛,当细胞膜透性增加时丙二醛的含量也会随之升高,而且活性氧毒害作用的表现便是丙二醛含量的积累[26]。丙二醛是判定植株在逆境胁迫下脂质过氧化强度的一个重要生理指标,同时也是植株衰老的表现[27]。由于低温胁迫增加了水解酶的活性,促进了淀粉的加速分解,改变了可溶性糖的含量。而当积累一定程度的可溶性糖时,细胞液浓度便会升高,进而使植物的耐寒性提高。在低温条件下,评估番茄耐寒性的另一指标为可溶性糖浓度[28]。渗透调节物质包括可溶性糖和游离脯氨酸,脯氨酸是一种在植物受到非生物胁迫时合成的重要渗透调节物质[29]。积累一定量的脯氨酸对细胞质水势降低、平衡水分、螯合单线态氧、羟自由基的清除、保护酶和蛋白质结构的稳定等具有一定的作用[30-32]。植物膜系统的损伤或膜结构的破坏会使膜透性改变,使细胞内小分子电解质外渗,增大植物细胞浸提液的电导率。膜透性与植物抗逆性强弱有关,抗逆性越强细胞的膜越稳定,膜透性也与逆境胁迫强度有关,胁迫越强膜损伤越严重,膜透性越大。细胞浸出液相对电导率的变化直接反映质膜受伤害的程度,细胞内含物外渗,导致电导率增大,使得植物受伤,抗性越弱[33]。O2-和H2O2作为活性氧的两种主要表现形式,在受到低温胁迫时会过度累积。NBT染色法可以被用作评估O2-的原位积累量的一种有效手段,当染色面积越大时,O2-的积累量就会越多,那么植株受到伤害的程度越严重[34-35]。丙二醛、可溶性糖、游离脯氨酸、叶片活性氧以及相对电导率含量的测定,都可以作为植株抗寒性的鉴定。除了这些生理指标之外,可溶性蛋白和叶绿素的含量也可作为辅助手段帮助进一步鉴定植株的耐寒性。

植物某一性状的变化趋势可以通过单一的生理生化指标反映,但对于植物响应逆境胁迫的综合能力难以反映出来,而同时测定多项生理生化指标,各项指标相互佐证,可以将植物的抗逆性实质更好地反映出来,真正体现植物的特性[36]。本研究通过TRV介导的SlMYB96沉默,观察外观性状并测定野生型组(WT)、空载组(CK)以及基因瞬时沉默组(pTRV2-MYB96)3组植株游离脯氨酸、可溶性糖、相对电导率等各项生理生化指标分析得出,TRV病毒侵染番茄幼苗并低温处理5 d后,基因瞬时沉默组耐寒性较差即SlMYB96属于抗寒基因。

4 结论

从番茄中克隆获得SlMYB96,其CDS全长为1 008 bp,编码335个氨基酸。SlMYB96对低温胁迫有响应,将其沉默之后,会使番茄植株抗寒性降低。

参考文献

施应宣.

园艺植物冷害和抗冷性分析

[J]. 农业开发与装备, 2020(3): 108, 118.

[本文引用: 1]

Shi YX.

Analysis of cold damage and cold resistance of horticultural plants

[J]. Agric Dev & Equip, 2020(3): 108, 118.

[本文引用: 1]

彭鹏. 早春大棚优质番茄品种的综合评价及耐寒性鉴定[D]. 郑州: 河南农业大学, 2019.

[本文引用: 1]

Peng P. Comprehensive evaluation and cold tolerance identification of high quality tomato varieties in early spring greenhouse[D]. Zhengzhou: Henan Agricultural University, 2019.

[本文引用: 1]

Albert NW, Griffiths AG, Cousins GR, et al.

Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium

[J]. New Phytol, 2015, 205(2): 882-893.

DOI:10.1111/nph.13100      PMID:25329638      [本文引用: 1]

Anthocyanin pigments accumulate to form spatially restricted patterns in plants, particularly in flowers, but also occur in vegetative tissues. Spatially restricted anthocyanin leaf markings are poorly characterised in plants, but are common in forage legumes. We hypothesised that the molecular basis for anthocyanin leaf markings in Trifolium spp. is due to the activity of a family of R2R3-MYB genes. R2R3-MYB genes were identified that are associated with the two classic pigmentation loci in T. repens. The R locus patterns 'red leaf', 'red midrib' and 'red fleck' are conditioned by a single MYB gene, RED LEAF. The 'diffuse red leaf' trait is regulated by the RED LEAF DIFFUSE MYB gene. The V locus was identified through mapping two V-linked traits, 'V-broken yellow' (Vby) and 'red leaflet' (Vrl). Two highly similar R2R3-MYB genes, RED V-a and RED V-b, mapped to the V locus and co-segregated with the RED V pigmentation pattern. Functional characterisation of RED LEAF and RED V was performed, confirming their function as anthocyanin regulators and identifying a C-terminal region necessary for transactivation. The mechanisms responsible for generating anthocyanin leaf markings in T. repens provide a valuable system to compare with mechanisms that regulate complex floral pigmentation.© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

吴小亲. SlMYB64参与番茄植株生长及花粉萌发的初步研究[D]. 泰安: 山东农业大学, 2016.

[本文引用: 1]

Wu XQ. Preliminary study on SlMYB64 involved in plant grouth and pollen germination in tomato[D]. Tai'an: Shandong Agricultural University, 2016.

[本文引用: 1]

陈静. 番茄SlMYB1R-1基因的克隆和功能研究[D]. 重庆: 重庆大学, 2017.

[本文引用: 1]

Chen J. Cloning and functional analysis of SlMYB1R-1 gene in tomato[D]. Chongqing: Chongqing University, 2017.

[本文引用: 1]

陈丽琛. 番茄SlMYB102基因的克隆及耐盐功能的初步鉴定[D]. 泰安: 山东农业大学, 2017.

[本文引用: 1]

Chen LC. Cloning and preliminarily functional analysis of SlMYB102 on salt stress in tomato[D]. Tai'an: Shandong Agricultural University, 2017.

[本文引用: 1]

Cui J, Jiang N, Zhou XX, et al.

Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress

[J]. Planta, 2018, 248(6): 1487-1503.

DOI:10.1007/s00425-018-2987-6      [本文引用: 1]

张旭, 陈丽琛, 任仲海.

番茄过表达SlMYB102对种子萌发及生长的影响

[J]. 园艺学报, 2018, 45(8): 1523-1534.

DOI:10.16420/j.issn.0513-353x.2018-0001      [本文引用: 1]

番茄(Solanum lycopersicum L.)基因组中已鉴定到121个R2R3-MYB转录因子,但其中绝大多数的生物学功能仍然未知。为探究R2R3-MYB转录因子基因SlMYB102的功能,从‘Micro-Tom’番茄中,利用PCR技术克隆了SlMYB102的编码区,全长为1 089 bp。保守结构域和系统进化树分析显示,SlMYB102蛋白包含两个保守的MYB结构域,与马铃薯的StMYB34同源性最高。亚细胞定位结果显示,SlMYB102编码的蛋白定位于细胞核中。SlMYB102在根、茎、叶、花和未绿熟、红熟果实中均有表达,在茎、叶、花中表达量较高。利用农杆菌介导,将35S::SlMYB102转入番茄,获得了两个过表达株系。与野生型相比,过表达株系种子萌发速率明显升高,而植株高度、叶面积、地上部及地下部的鲜质量均显著降低。显微观察结果表明,与野生型相比,过表达株系叶片表皮细胞面积大小并没有变化,推测过表达SlMYB102是通过减少细胞分裂来抑制番茄植株的生长。

Zhang X, Chen LC, Ren ZH.

Effects of overexpression of SlMYB102 on the tomato seed germination and growth

[J]. Acta Hortic Sin, 2018, 45(8): 1523-1534.

[本文引用: 1]

简伟. 番茄SlMYB75和SlNAC6转录因子在果实成熟及胁迫应答中的功能研究[D]. 重庆: 重庆大学, 2018.

[本文引用: 1]

Jian W. Functional study of tomato SlMYB75 and SlNAC6 transcription factors in fruit ripening and stress responses[D]. Chongqing: Chongqing University, 2018.

[本文引用: 1]

张露月. SlMYB15转录因子调控番茄低温抗性的作用机制研究[D]. 杭州: 浙江大学, 2020.

[本文引用: 1]

Zhang LY. Mechanism of SlMYB15 mediated-regulation of cold response in tomato[D]. Hangzhou: Zhejiang University, 2020.

[本文引用: 1]

刁鹏飞. SlMYB41基因的克隆及其在番茄低温胁迫响应中的功能分析[D]. 泰安: 山东农业大学, 2020.

[本文引用: 1]

Diao PF. Cloning of SlMYB4 and its functional analysis in tomato response to chilling stress[D]. Tai'an: Shandong Agricultural University, 2020.

[本文引用: 1]

Wang ML, Hao J, Chen XH, et al.

SlMYB102 expression enhances low-temperature stress resistance in tomato plants

[J]. PeerJ, 2020, 8: e10059.

DOI:10.7717/peerj.10059      URL     [本文引用: 1]

Herein, we identified the tomato SlMYB102 gene as a MYB family transcription factor of the R2R3-MYB subfamily. We additionally determined that the SlMYB102 promoter region contains photoresponsive, abiotic stress-responsive, and hormone-responsive regulatory elements, and we detected higher SlMYB102 expression in the reproductive organs of tomato than that in vegetative organs, with the expression being highest in ripe fruits and in roots. SlMYB102 expression was also shown to be cold-inducible. The protein encoded by SlMYB102 localized to the nucleus wherein it was found to mediate the transcriptional activation of target genes through its C-terminal domain. Overexpression of SlMYB102 in tomato plants conferred enhanced tolerance to cold stress. Under such cold stress conditions, we found that proline levels in the leaves of SlMYB102 overexpressing transgenic plants were higher than those in WT plants. In addition, S1MYB102 overexpression was associated with the enhanced expression of cold response genes including SlCBF1, SlCBF3, SlDREB1, SlDEB2, and SlICE1. We also found that the overexpression of SlMYB102 further enhanced the cold-induced upregulation of SlP5CS and SlAPX2. Taken together, these results suggest that SlMYB102 may be involved in the C-repeat binding transcription factor (CBF) and proline synthesis pathways, thereby improving tomato plant cold resistance.

沈峰屹. 番茄SLMYBl4基因响应非生物胁迫的功能分析[D]. 哈尔滨: 东北农业大学, 2021.

[本文引用: 1]

Shen FY. Functional analysis of SLMYBl4 gene of tomato in response to abiotic stress[D]. Harbin: Northeast Agricultural University, 2021.

[本文引用: 1]

Chen YN, Li L, Tang BY, et al.

Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato

[J]. Plant Sci, 2022, 316: 111166.

DOI:10.1016/j.plantsci.2021.111166      URL     [本文引用: 1]

贾梦玫, 郝娟, 郭仰东, .

番茄SlMYB74转录激活分析及互作蛋白的初步筛选

[J]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20211123.1838.014.html.

URL     [本文引用: 1]

Jia MM, Hao J, Guo YD, et al.

Analysis of tomato SlMYB74 transcription activation and preliminary screening of interacting proteins

[J]. Mol plant breed, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20211123.1838.014.html.

URL     [本文引用: 1]

张恒, 陈艳琦, 任杰莹, .

西南麦区小麦苗期氮高效品种筛选及指标体系构建

[J]. 四川农业大学学报, 2022, 40(1): 10-18, 27.

[本文引用: 1]

Zhang H, Chen YQ, Ren JY, et al.

Screening of wheat cultivars with high nitrogen efficiency at seedling stage and construction of index system in southwest wheat region

[J]. J Sichuan Agric Univ, 2022, 40(1): 10-18, 27.

[本文引用: 1]

徐新娟, 李勇超.

2种植物相对电导率测定方法比较

[J]. 江苏农业科学, 2014(7): 311-312.

[本文引用: 1]

Xu XJ, Li YC.

Comparison of two relative conductivity measurements in plants

Jiangsu Agric Sci, 2014(7): 311-312.

[本文引用: 1]

苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013.

[本文引用: 1]

Cang J, Zhao HJ. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2013.

[本文引用: 1]

Kong FY, Deng YS, Zhou B, et al.

A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress

[J]. J Exp Bot, 2014, 65(1): 143-158.

DOI:10.1093/jxb/ert357      PMID:24227338      [本文引用: 1]

DnaJ proteins act as essential molecular chaperones in protein homeostasis and protein complex stabilization under stress conditions. The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1), whose expression was upregulated by treatment at 4 and 42 °C, and with high light, NaCl, polyethylene glycol, and H2O2, were investigated here using sense and antisense transgenic tomatoes. The sense plants exhibited not only higher chlorophyll content, fresh weight and net photosynthetic rate, but also lower accumulation of reactive oxygen species and membrane damage under chilling stress. Moreover, the maximal photochemistry efficiency of photosystem II (PSII) (F v/F m) and D1 protein content were higher in the sense plants and lower in the antisense plants, and the photoinhibitory quenching was lower in the sense plants and higher in the antisense plants, suggesting that the inhibition of PSII was less severe in the sense plants and more severe in the antisense plants compared with the wild type. Furthermore, the PSII protein complexes were also more stable in the sense plants. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher F v/F m, D1 protein content and PSII stability than the SM-untreated antisense plants. This finding suggested that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, chloroplast heat-shock protein 70 was identified as the partner of LeCDJ1. These results indicate that LeCDJ1 has essential functions in maintaining PSII under chilling stress.

Ahmad A, Hadi F, Ali N.

Effective phytoextraction of cadmium(Cd)with increasing concentration of total phenolics and free proline in Cannabis sativa(L)plant under various treatments of fertilizers, plant growth regulators and sodium salt

[J]. Int J Phytoremediation, 2015, 17(1/2/3/4/5/6): 56-65.

DOI:10.1080/15226514.2013.828018      URL     [本文引用: 1]

罗群.

考马斯亮蓝法快速测定菜籽粕中可溶性蛋白质的含量

[J]. 成都大学学报: 自然科学版, 2014, 33(2): 125-126, 129.

[本文引用: 1]

Luo Q.

Rapid determination of soluble protein content in rapeseed meal by coomassie brilliant blue method

[J]. J Chengdu Univ Nat Sci Ed, 2014, 33(2): 125-126, 129.

[本文引用: 1]

Li CN, Ng CKY, Fan LM.

MYB transcription factors, active players in abiotic stress signaling

[J]. Environ Exp Bot, 2015, 114: 80-91.

DOI:10.1016/j.envexpbot.2014.06.014      URL     [本文引用: 1]

Imahori Y, Takemura M, Bai JH.

Chilling-induced oxidative stress and antioxidant responses in mume(Prunus mume)fruit during low temperature storage

[J]. Postharvest Biol Technol, 2008, 49(1): 54-60.

DOI:10.1016/j.postharvbio.2007.10.017      URL     [本文引用: 1]

赵春梅. 内质网小分子热激蛋白基因导入番茄的研究[D]. 济南: 山东师范大学, 2003.

[本文引用: 1]

Zhao CM. Studies on introduction the gene encoding small heat shock protein in the endoplasmic Reticulum into tomato[D]. Jinan: Shandong Normal University, 2003.

[本文引用: 1]

钱芝龙, 丁犁平, 曹寿椿.

低温胁迫对辣(甜)椒幼苗膜脂过氧化水平及保护酶活性的影响

[J]. 园艺学报, 1994, 21(2): 203-204.

[本文引用: 1]

Qian ZL, Ding LP, Cao SC.

Effect of low temperature stress on pepper seedling lipid peroxidation level and protective enzyme activity

[J]. Acta Hortic Sin, 1994, 21(2): 203-204.

[本文引用: 1]

Alonso A, Queiroz CS, et al.

Chilling stress leads to increased cell membrane rigidity in roots of coffee(Coffea arabica L.) seedlings

[J]. Biochim Biophys Acta, 1997, 1323(1): 75-84.

PMID:9030214      [本文引用: 1]

Tropical and sub-tropical higher plant species show marked growth inhibition when exposed to chilling temperatures. In root tip segments of coffee seedlings which were subjected for 6 days to temperatures of 10, 15, 20 and 25 degrees C, in darkness, we have detected an increased amount of malondialdehyde formed in the 10 degrees C treatment, accompanied by higher electrolyte leakage. The electron paramagnetic resonance (EPR) technique and the fatty acid spin probes 5-, 12- and 16-doxylstearic acid were used to assess cellular membrane fluidity. At the depth of the 5th and 16th carbon atom of the alkyl chains the nitroxide radical detected more rigid membranes in seedlings subjected to 10 degrees C compared with 15 and 25 degrees C. At the C-12 position of the chains the probe showed very restricted motion and was insensitive to chilling induced membrane alterations. EPR parameters for intact tissues and microsome preparations from root tips showed that the fluidity was essentially the same when evaluated at C-5 and C-16 positions of the chains, and was considerably more fluid for microsomal membranes in the region of the C-12 position of the bilayers. The rotational motion of the nitroxide at C-16 position of the chains experienced a phase transition at about 15 degrees C. The calculated energy barriers for reorientational motion of the probe 16-doxylstearic acid were higher at temperatures of 5-15 degrees C than in the interval of 15-25 degrees C, suggesting that below the phase transition the membrane lipids assume a more ordered and compacted array. Membrane rigidity induced by chilling was interpreted as due to lipid peroxidation that could have been facilitated by higher density of peroxidizable chains below the membrane phase transition.

王孝宣, 李树德, 东惠茹, .

番茄品种耐寒性与ABA和可溶性糖含量的关系

[J]. 园艺学报, 1998(1): 56-60.

[本文引用: 1]

Wang XX, Li SD, Dong HR, et al.

The correlationship of cold-tolerance with ABA, soluble sugar and respiratory intensity in tomato

[J]. Acta Hortic Sin, 1998(1): 56-60.

[本文引用: 1]

Sun Q, Ye ZH, Wang XR, et al.

Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii

[J]. J Plant Physiol, 2007, 164(11): 1489-1498.

DOI:10.1016/j.jplph.2006.10.001      URL     [本文引用: 1]

Gupta NK, Agarwal S, et al.

Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings

[J]. Acta Physiol Plant, 2013, 35(6): 1837-1842.

DOI:10.1007/s11738-013-1221-1      URL     [本文引用: 1]

Hasanuzzaman M, Nahar K, Alam M, et al.

Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants

[J]. Int J Mol Sci, 2013, 14(5): 9643-9684.

DOI:10.3390/ijms14059643      PMID:23644891      [本文引用: 1]

High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.

Hayat S, Hayat Q, Alyemeni MN, et al.

Role of proline under changing environments: a review

[J]. Plant Signal Behav, 2012, 7(11): 1456-1466.

DOI:10.4161/psb.21949      PMID:22951402      [本文引用: 1]

When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst in plants. Reports indicate enhanced stress tolerance when proline is supplied exogenously at low concentrations. However, some reports indicate toxic effects of proline when supplied exogenously at higher concentrations. In this article, we review and discuss the effects of exogenous proline on plants exposed to various abiotic stresses. Numerous examples of successful application of exogenous proline to improve stress tolerance are presented. The roles played by exogenous proline under varying environments have been critically examined and reviewed.

钟胜. 抗寒相关基因CBF3ICE1以及AtGolS3的转基因拟南芥耐寒效果评价[D]. 海口: 海南大学, 2008.

[本文引用: 1]

Zhong S. Evaluation of cold resistance effects of transgenic Arabidopsis with cold resistance-related genes CBF3, ICE1 and AtGolS3[D]. Haikou: Hainan University, 2008.

[本文引用: 1]

Kumar D, Yusuf M, Singh P, et al.

Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings

[J]. BIO-PROTOCOL, 2014, 4(8): 1108.

[本文引用: 1]

Shulaev V, Oliver DJ.

Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research

[J]. Plant Physiol, 2006, 141(2): 367-372.

PMID:16760489      [本文引用: 1]

于乔乔. 低温胁迫下玉米幼苗光合及呼吸代谢特性的研究[D]. 哈尔滨: 东北农业大学, 2021.

[本文引用: 1]

Yu QQ. Study on the characteristics of photosynthesis and respiratory metabolism of maize seedlings under low temperature stress[D]. Harbin: Northeast Agricultural University, 2021.

[本文引用: 1]

张娟, 徐坤, 孙杰.

番茄不同砧木材料幼苗对低温胁迫的反应

[J]. 西北农业学报, 2004, 13(2): 104-108.

[本文引用: 1]

Zhang J, Xu K, Sun J.

Response of different tomato stocks to low temperature stress

[J]. Acta Agric Boreali Occidentalis Sin, 2004, 13(2): 104-108.

[本文引用: 1]

/