[1]Kwon YC, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis[J]. Sci Rep, 2015, 5:8663. [2]Swartz JR. Transforming biochemical engineering with cell-free biology[J]. AIChE Journal, 2012, 58(1):5-13. [3]Buntru M, Vogel S, Spiegel H, et al. Tobacco BY-2 cell-free lysate:an alternative and highly-productive plant-based in vitro translation system[J]. BMC Biotechnology, 2014, 14(37):1-17. [4]Caschera F, Noireaux V. Synthesis of 2. 3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system[J]. Biochimie, 2014, 99:162-168. [5]Nirenberg MW, Matthael JH. The Dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides[J]. Proceedings of the National Academy of Sciences, 1961, 47:1588-1602. [6]Carlson ED, Gan R, Hodgman CE, et al. Cell-free protein synthesis:Applications come of age[J]. Biotechnology Advances, 2012, 30(5):1185-1194. [7]Hino M, Kataoka M, Kajimoto K, et al. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes[J]. J Biotechnol, 2008, 133:183-189. [8]Komoda K, Naito S, Ishikawa M. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts[J]. Proceedings of the National Academy of Sciences, 2004, 101(7):1863-1867. [9]Ishibashi K, Ishikawa M. Replication of tobamovirus RNA[J]. Annual Review of Phytopathology, 2016, 4(54):55-78. [10] Takamatsu N, Watanabe Y, Iwasaki T, et al. Deletion analysis of the 5’ untranslated leader sequence of Tobacco mosaic virus RNA[J]. Journal of Virology, 1991, 65(3):1619-1622. [11]Molla A, Paul AV, Wimmer E. Cell-free, de novo synthesis of poliovirus[J]. Science, 1991, 254:1647-1651. [12]Herold J and Andino R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge[J]. Molecular Cell, 2001, 7:581-591. [13]Barton DJ, Morasco BJ, Flanegan JB. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis[J]. Journal of Virology, 1999, 73(12):10104-10112. [14]Reuter LJ, Bailey MJ, Joensuu JJ, et al. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells[J]. Plant Biotechnology Journal, 2014, 12(4):402-410. [15]Nambo M, Kurihara D, Yamada T, et al. Combination of synthetic chemistry and live-cell imaging identified a rapid cell division inhibitor in tobacco and Arabidopsis thaliana[J]. Plant Cell Physiology, 2016, 57(11):2255-2268. [16]Chang JJ, Sonobe S, Shibaoka H. Assembly of microtubules in a cytoplasmic extract of tobacco BY-2 mini protoplasts in the absence of microtubule-stabilizing agents[J]. Plant Cell Physiology, 1992, 33(4):497-501. [17]Iwakawa HO, Kaido M, Mise K, et al. cis-Acting core RNA elements required for negative-strand RNA synthesis and cap-independent translation are separated in the 3’-untranslated region of Red clover necrotic mosaic virus RNA1[J]. Virology, 2007, 369:168-181. [18]An M, Iwakawa HO, Mine A, et al. A Y-shaped RNA structure in the 3’ untranslated region together with the trans-activator and core promoter of Red clover necrotic mosaic virus RNA2 is required for its negative-strand RNA synthesis[J]. Virology, 2010, 405:100-109. [19]Komoda K, Mawatari N, Hagiwara-Komoda Y, et al. Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication complex formation[J]. Journal of Virology, 2007, 81(6):2584-2591. [20]Chen J, Ahlquist P. Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a[J]. Journal of Virology, 2000, 74:4310-4318. [21]Ishibashi K, Masuda K, Naito S, et al. An inhibitor of viral RNA replication is encoded by a plant resistance gene[J]. Proceedings of the National Academy of Sciences, 2007, 104:13833-13838. [22]Okamoto K, Nagano H, Iwakawa, HO, et al. cis-Preferential requirement of a-1 frameshift product p88 for the replication of Red clover necrotic mosaic virus RNA1[J]. Virology, 2008, 375(1):205-212. [23]Mizumoto H, Tatsuta M, Kaido M, et al. Cap independent translational enhancement by the 3’ untranslated region of Red clover necrotic mosaic virus RNA1[J]. Journal of Virology, 2003, 77(22):12113-12121. [24]Iwakawa HO, Mine A, Hyodo K, et al. Template recognition mechanisms by replicase proteins differ between bipartite positive-strand genomic RNAs of a plant virus[J]. Journal of Virology, 2011, 85(1):497-509, [25]Iwakawa HO, Tajima Y, Taniguchi T, et al. Poly(A)-binding protein facilitates translation of an uncapped/ nonpolyadenylated viral RNA by binding to the 3’ untranslated region[J]. Journal of Virology, 2012, 86(15):7836-7849. [26]Mine A, Takeda A, Taniguchi T, et al. Identification and characterization of the 480-kilodalton template-specific RNA dependent RNA polymerase complex of Red clover necrotic mosaic virus[J]. Journal of Virology, 2010, 84(12):6070-6081. [27]Ishibashi K, Masuda K, Naito S, et al. An inhibitor of viral RNA replication is encoded by a plant resistance gene[J]. Proceedings of the National Academy of Sciences, 2007, 104(34):13833-13838. [28]Gursinsky T, Schulz B, Behrens SE. Replication of Tomato bushy stunt virus RNA in a plant in vitro system[J]. Virology, 2009, 390:250-260. [29]Roberts BE, Paterson BM. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ[J]. Proceedings of the National Academy of Sciences, 1973, 70(8):2330-2334. [30]刘永祥, 陈思远, 张逸婧, 等. 麦胚无细胞蛋白合成系统研究进展[J]. 食品工业科技, 2015, 36(17):379-383. [31]Guo L, Allen EM, Miller WA. Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA[J]. Molecular Cell, 2001, 7(5):1103-1109. [32]Shen RZ, Rakotondrafara AM, Miller WA. trans Regulation of cap-independent translation by a viral subgenomic RNA[J]. Journal of Virology, 2006, 80(20):10045-10054. [33]Treder K, Pettit Kneller EL, Allen EM, et al. The 3’ cap-independent translation element of Barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation[J]. RNA, 2008, 14(1):134-147. [34] ?oniewska-Lwowska A, Che?stowska S, Zagórski-Ostoja W, et al. Elements regulating Potato leafroll virus sgRNA1 translation are located within the coding sequences of the coat protein and read-through domain[J]. Acta Biochimica Polonica, 2009, 56(4):619-625. [35]Pogany J, Nagy PD. Authentic replication and recombination of Tomato bushy stunt virus RNA in a cell-free extract from yeast[J]. Journal of Virology, 2008, 82(12):5967-5980. [36]Pogany J, Stork J, Li ZH, et al. In vitro assembly of the Tomato bushy stunt virus replicase requires the host heat shock protein 70[J]. Proceedings of the National Academy of Sciences, 2008, 105(50):19956-19961. [37]Xu K. Huang TS, Nagy PD. Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes[J]. Journal of Virology, 2012, 86(23):12779-12794. [38]Iki T, Yoshikawa M, Nishikiori M, et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90[J]. Molecular Cell, 2010, 39(2):282-291. [39]Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants[J]. Molecular Cell, 2013, 52(4):591-601. [40]Mercx S, Tollet J, Magy B, et al. Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells[J]. Frontiers in Plant Science, 2016, 7:40. |