[1]Zamparas M, Zacharias I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review[J]. Science of the Total Environment, 2014, 496:551-562. [2]Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids[J]. Chemosphere, 2007, 66(1):123-129. [3]Fuhs GW, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology, 1975, 2(2):119-138. [4]Li WW, Zhang HL, Sheng GP, et al. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process[J]. Water Research, 2015, 86(20):85-95. [5]Hiraishi A, Morishima Y. Capacity for polyphosphate accumulation of predominant bacteria in activated sludge showing enhanced phosphate removal[J]. Journal of Fermentation & Bioengineering, 1990, 69(6):368-371. [6]Auling G, Pilz F, Busse H, et al. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp[J]. Applied & Environ Microbiol, 1991, 57(12):3585-3592. [7]Bark K, Sponner A, K?mpfer P, et al. Differences in polyphosphate accumulation and phosphate adsorption by Acinetobacter isolates from wastewater producing polyphosphate:AMP phosphotransferase[J]. Water Research, 1992, 26(10):1379-1388. [8] Seviour RJ, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge systems[J]. Fems MicroBiol Rev, 2003, 27(1):99-127. [9]Wagner M, Erhart R, Manz W, et al. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge[J]. Applied & Environ Microbiol, 1994, 60(3):792-800. [10]Che OJ, Lee DS, Park JM. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor[J]. Water Research, 2003, 37(9):2195-2205. [11]Kristiansen R, Nguyen HTT, Saunders AM, et al. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal[J]. Isme Journal, 2013, 7(3):543-554. [12]吉茸, 王少坡, 赵乐丹, 等. 聚磷菌Accumulibacter各进化枝研究进展[J]. 工业水处理, 2017, 37(1):7-11. [13]Hesselmann RPX, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic & Applied Microbiology, 1999, 22(3):454. [14]Islam MS, Zhang Y, Dong S, et al. Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process[J]. J Environ Mange, 2017, 198(Pt1):300-307. [15]Liu H, Yang Y, Ge Y, et al. Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system[J]. Bioresource Technology, 2016, 222:114. [16]葛艳辉. 强化生物除磷系统除磷效果及微生物群落结构分析[D]. 天津:天津大学, 2012. [17]Cech JS, Hartman P. Glucose induced break down of enhanced biological phosphate removal[J]. Environmental Technology, 1990, 11(7):651-656. [18]Cech JS, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J]. Water Research, 1993, 27(7):1219-1225. [19]Seviour RJ, Maszenan AM, Soddell JA, et al. Microbiology of the ‘G-bacteria’ in activated sludge[J]. Environ Microbiol, 2000, 2(6):581-593. [20]Mino T, Liu WT, Kurisu F, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science & Technology, 1995, 31(2):25-34. [21]Nielsen AT, Liu WT, Filipe C, et al. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor[J]. Applied & Environ Microbiol, 1999, 65(3):1251. [22]孙雪, 朱为静, 王亮, 等. 强化生物除磷系统主要微生物及其代谢机理研究进展[J]. 应用生态学报, 2014, 25(3):892-902. [23]Oehmen A, Lemos PC, Carvalho G, et al. Advances in enhanced biological phosphorus removal:from micro to macro scale[J]. Water Research, 2007, 41(11):2271-2300. [24]Mielczarek AT, Nguyen HT, Nielsen JL, et al. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants[J]. Water Research, 2013, 47(4):1529-1544. [25]Brdjanovic D, Loosdrecht MCMV, Hooijmans CM, et al. Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms[J]. Applied Microbiology & Biotechnology, 1998, 50(2):273-276. [26]Zhou Y, Pijuan M, Zeng RJ, et al. Could polyphosphate-accumulating organisms(PAOs)be glycogen-accumulating organisms(GAOs)?[J]. Water Research, 2008, 42(10-11):2361-2368. [27]Nielsen JL, Nguyen H, Meyer RL, et al. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing[J]. Microbiology, 2012, 158(Pt 7):1818. [28]Nielsen PH, Mielczarek AT, Kragelund C, et al. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants[J]. Water Research, 2010, 44(17):5070-5088. [29]许秀红, 李秀, 李绍峰, 等. 强化生物除磷系统中聚磷菌和聚糖菌的竞争研究进展[J]. 化学工程师, 2017(1):44-48. [30]Rubiorincón FJ, Lopezvazquez CM, Welles L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumuliba-cter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120:156-164. [31]Che OJ, Park JM. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source[J]. Water Research, 2000, 34(7):2160-2170. [32]Gebremariam SY, Beutel MW. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate[J]. Bioresource Technology, 2012, 121(7):19. [33]Pijuan M, Saunders AM, Guisasola A, et al. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source[J]. Biotechnology & Bioengineering, 2004, 85(1):56-67. [34]Xie T, Mo C, Li X, et al. Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal(EBPR)system[J]. Environ Sci Pollut Res Int, 2017, 24(5):4494-4505. [35]姜涛. 温度与碳源对生物除磷系统中PAO和GAO影响及除磷效能研究[D]. 哈尔滨:哈尔滨工业大学, 2011. [36]张兰河, 李德生, 王旭明, 等. 不同碳源对聚磷菌与聚糖菌竞争的影响[J]. 化学工程, 2015, 43(10):1-5. [37]Zhang C, Chen Y, Liu Y. Effect of pH on enzyme activity involved in enhanced biological phosphorus removal system[C]. 13th international biotechnology symposium and exhibition, 2008:S657. [38]Ahn J, Mcilroy S, Schroeder S, et al. Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(7):885. [39]Fukushima T, Onuki M, Satoh H, et al. Effect of pH reduction on polyphosphate- and glycogen-accumulating organisms in enhanced biological phosphorus removal processes[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2010, 62(6):1432-1439. [40]Erdal UG, Erdal ZK, Daigger GT, et al. Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence from an experimental study[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(6):1329. [41]Hu Z, Sun P, Hu Z, et al. Short-term performance of enhanced biological phosphorus removal(EBPR)system exposed to erythromycin(ERY)and oxytetracycline(OTC)[J]. Bioresource Technology, 2016, 221:15-25. [42]Hu Z, Lu X, Sun P, et al. Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability[J]. Bioresource Technology, 2016, 225:279-285. [43]Sun J, Yang Q, Wang DB, et al. Nickel toxicity to the performance and microbial community of enhanced biological phosphorus removal system[J]. J Sunetal. /Chemical Engineering Journal, 2017, 313:415-423. [44]周明璟, 纪树兰, 崔丹红, 等. 厌氧/好氧交替快速筛选聚磷菌及其生理特性的研究[J]. 中国环境科学, 2012, 32(10):1838-1844. [45]庄志刚, 韩永和, 章文贤, 等. 高效聚磷菌Alcaligenes sp. ED-12菌株的分离鉴定及其除磷特性[J]. 环境科学学报, 2014, 34(3):678-687. [46]朱卫强, 陈舒, 张培玉. 2株反硝化聚磷菌的筛选及其影响因素[J]. 环境工程学报, 2016, 10(6):3295-3302. [47]李慧, 刘丹丹, 陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性[J]. 环境工程, 2016, 34(4):25-28. [48]刘彩云, 朱卫强, 邱晨, 等. 一株反硝化聚磷菌的筛选及其脱氮除磷性能研究[J]. 青岛大学学报:自然科学版, 2016, 29(2):51-56. [49]Morohoshi T, Yamashita T, Kato J, et al. A method for screening polyphosphate-accumulating mutants which remove phosphate efficiently from synthetic wastewater[J]. Journal of Bioscience & Bioengineering, 2003, 95(6):637-640. [50]蔡天明, 管莉菠, 崔中利, 等. 高效聚磷菌株GM1的分离和聚磷特性研究[J]. 土壤学报, 2005, 42(4):635-641. [51]Cai TM, Guan LB, Chen LW, et al. Enhanced Biological Phosphorus Removal with Pseudomonas putida GM6 from Activated Sludge[J]. Pedosphere(土壤圈:英文版), 2007, 17(5):624-629. [52]张丹丹, 孙永利, 李鹏峰, 等. 化学强化除磷污水处理厂聚磷菌的分离筛选[J]. 天津理工大学学报, 2016, 32(5):60-64. [53]Liang M, Frank S, Lünsdorf H, et al. Bacterial microcompartment‐directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli[J]. Biotechnology Journal, 2017, 12(3). doi:10. 1002/biot. 201600415. [54]王勤, 赵庆顺, 肖琳, 等. 转聚磷激酶基因的大肠杆菌去除水体中的磷[J]. 中国环境科学, 2006, 26(6):742-745. [55]杜宏伟, 武俊, 肖琳, 等. 聚磷激酶基因在假单胞菌中的整合和表达[J]. 环境科学, 2009, 30(10):3011-3015. [56]Wilmes P, Andersson AF, Lefsrud MG, et al. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal[J]. Isme Journal, 2008, 2(8):853. [57]Albertsen M, Saunders AM, Nielsen KL, et al. Metagenomes obtained by ‘deep sequencing’-what do they tell about the enhanced biological phosphorus removal communities?[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2013, 68(9):1959-1968. [58]李海峰, 李志建, 屈建航. 高效聚磷菌的分离、筛选与构建的研究进展[J]. 生物技术, 2012, 22(4):93-97. |