[1] Leigh RA, Wyn Jones RG.A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytologist, 1984, 97(1):1-13. [2] 徐赫韩, 侯国媛, 李洋, 等. 植物钾离子通道 AKT1 的研究进展[J]. 生物技术, 2018, 28(2):200-204. Xu HH, Hou GY, Li Y, et al.Research progress of plant potassium channel AKT1[J]. Biotechnology, 2018, 8(2):200-204, 150. [3] Zörb C, Senbayram M, Peiter E.Potassium in agriculture-status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9):656-669. [4] Kollist H, Nuhkat M, Roelfsema MR.Closing gaps:linking elements that control stomatal movement[J]. New Phytologist, 2014, 203(1):44-62. [5] Wang Y, Wu WH.Potassium transport and signaling in higher plants[J]. Annual Review of Plant Biology, 2013, 64:451-476. [6] Wang Y, Lü J, Chen D, et al.Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear[J]. Genome, 2018, 61(10):755-765. [7] Rubio F, Nieves-Cordones M, Horie T, et al.Doing ‘business as usual’comes with a cost:evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions[J]. New Phytologist, 2020, 225(3):1097-1104. [8] Véry AA, Nieves-Cordones M, Daly M, et al.Molecular biology of K+ transport across the plant cell membrane:what do we learn from comparison between plant species?[J]. Journal of Plant Physiology, 2014, 171(9):748-769. [9] Yang T, Zhang S, Hu Y, et al.The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiology, 2014, 166(2):945-959. [10] He C, Cui K, Duan A, et al.Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family[J]. Ecology and Evolution, 2012, 2(8):1996-2004. [11] Song Z, Wu X, Gao Y, et al.Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco(Nicotiana tabacum)[J]. Genome, 2019, 62(4):267-278. [12] Ahn SJ, Shin R, Schachtman DP.Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake[J]. Plant Physiology, 2004, 134(3):1135-1145. [13] Chen G, Hu Q, Luo LE, et al.Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant, Cell & Environment, 2015, 38(12):2747-2765. [14] Nieves-Cordones M, Ródenas R, Chavanieu A, et al.Uneven HAK/KUP/KT protein diversity among angiosperms:species distribution and perspectives[J]. Frontiers in Plant Science, 2016, 7:127. [15] Ou W, Mao X, Huang C, et al.Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava(Manihot esculenta Crantz)[J]. Frontiers in Physiology, 2018, 9:17. [16] Horie T, Brodsky DE, Costa A, et al.K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions[J]. Plant Physiology, 2011, 156(3):1493-1507. [17] Takahashi R, Nishio T, Ichizen N, et al.High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Reports, 2007, 26(9):1673-1679. [18] Cheng X, Liu X, Mao W, et al.Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat(Triticum aestivum L.)[J]. International Journal of Molecular Sciences, 2018, 19(12):3969. [19] Desbrosses G, Josefsson C, Rigas S, et al.AKT1 and TRH1 are required during root hair elongation in Arabidopsis[J]. Journal of Experimental Botany, 2003, 54(383):781-788. [20] Vicente-Agullo F, Rigas S, Desbrosses G, et al.Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots[J]. The Plant Journal, 2004, 40(4):523-535. [21] Santa-María GE, Rubio F, Dubcovsky J, et al.The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. The Plant Cell, 1997, 9(12):2281-2289. [22] Very AA, Sentenac H.Molecular mechanisms and regulation of K+ transport in higher plants[J]. Annual Review of Plant Biology, 2003, 54(1):575-603. [23] Kim EJ, Kwak JM, Uozumi N, et al.AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. The Plant Cell, 1998, 10(1):51-62. [24] Li W, Xu G, Alli A, et al.Plant HAK/KUP/KT K+ transporters:function and regulation[C]//Seminars in Cell & Developmental Biology. Academic Press, 2018, 74:133-141. [25] Okada T, Yamane S, Yamaguchi M, et al.Characterization of rice KT/HAK/KUP potassium transporters and K+ uptake by HAK1 from Oryza sativa[J]. Plant Biotechnology, 2018, 35:101-111. [26] Feng H, Tang Q, Cai J, et al.Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance[J]. Planta, 2019, 250(2):549-561. [27] Banuelos MA, Garciadeblas B, Cubero B, et al.Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiology, 2002, 130(2):784-795. [28] Shen Y, Shen L, Shen Z, et al.The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant, Cell & Environment, 2015, 38(12):2766-2779. [29] Gierth M, Mäser P, Schroeder JI.The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiology, 2005, 137(3):1105-1114. [30] Shin R, Schachtman DP.Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proceedings of the National Academy of Sciences, 2004, 101(23):8827-8832. [31] Martínez-Cordero MA, Martínez V, Rubio F.Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper[J]. Plant Molecular Biology, 2004, 56(3):413-421. [32] Nieves-Cordones M, Miller AJ, Alemán F, et al.A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J]. Plant Molecular Biology, 2008, 68(6):521. [33] Alemán F, Nieves-Cordones M, Martínez V, et al.Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2009, 65(2-3):263-269. [34] Santa-María GE, Rubio F, Dubcovsky J, et al.The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. The Plant Cell, 1997, 9(12):2281-2289. [35] Boscari A, Clement M, Volkov V, et al.Potassium channels in barley:cloning, functional characterization and expression analyses in relation to leaf growth and development[J]. Plant, Cell & Environment, 2009, 32(12):1761-1777. [36] Su H, Golldack D, Zhao C, et al.The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant[J]. Plant Physiology, 2002, 129(4):1482-1493. [37] Su Q, Feng S, An L, et al.Cloning and functional expression in Saccharomyces cereviae of a K+ transporter, AlHAK, from the graminaceous halophyte, Aeluropus littoralis[J]. Biotechnology Letters, 2007, 29(12):1959-1963. [38] Takahashi R, Nishio T, Ichizen N, et al.Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants[J]. Biotechnology Letters, 2007, 29(3):501-506. [39] Garciadeblas B, Benito B, Rodríguez-Navarro A.Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa[J]. Plant Molecular Biology, 2002, 50(4-5):623-633. [40] Guo Z, Yang Q, Wan X, et al.Functional characterization of a potassium transporter gene NrHAK1 in Nicotiana rustica[J]. Journal of Zhejiang University Science B, 2008, 9(12):944-952. [41] Chen G, Zhang Y, Ruan B, et al.OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism[J]. Plant Science, 2018, 274:261-270. [42] Zhang H, Xiao W, Yu W, et al.Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress[J]. Plant Cell Reports, 2018, 37(11):1533-1546. [43] Qin YJ, Wu WH, Wang Y.ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions[J]. Journal of Integrative Plant Biology, 2019, 61(6):691-705. [44] Feng X, Wang Y, Zhang N, et al.Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum[J]. BMC Plant Biology, 2020, 20:20. [45] 张松. 钾离子转运蛋白 OsHAK5 调控水稻株型机理的探究[D]. 南京:南京农业大学, 2015. Zhang S.How does a potassium transporter OsHAK5 affect rice plant architecture[D]. Nanjing:Nanjing Agricultural Univer-sity, 2015. [46] Qin LJ, Zhao D, Zhang Y, et al.Selectable marker-free co-expression of Nicotiana rustica CN and Nicotiana tabacum HAK1 genes improves resistance to tobacco mosaic virus in tobacco[J]. Functional Plant Biology, 2015, 42(8):802-815. [47] Qi Z, Hampton CR, Shin R, et al.The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(3):595-607. [48] Zhao S, Zhang ML, Ma TL, et al.Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress[J]. The Plant Cell, 2016, 28(12):3005-3019. [49] Zhu JK.Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273. [50] Chen G, Liu C, Gao Z, et al.OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice[J]. Frontiers in Plant Science, 2017, 8:1885. [51] 张祎, 秦利军, 赵丹, 赵德刚. 超量表达NtHAK1 基因提高烟草干旱胁迫能力[J]. 植物生理学报, 2017, 53(8):1444-1452. Zhang Y, Qin LJ, Zhso D, Zhao DG.Improvement of drought-stress in NtHAK1-overexpressing Nicotiana tabacum[J]. Plant Physiology Communications, 2017, 53(8):1444-1452. [52] Jiang Y, Qiu Y, Hu Y, et al.Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa[J]. Frontiers in Plant Science, 2016, 7:145. [53] Zhang Z, Zhang J, Chen Y, et al.Genome-wide analysis and identification of HAK potassium transporter gene family in maize(Zeamays L.)[J]. Molecular Biology Reports, 2012, 39(8):8465-8473. [54] Assaha DV, Ueda A, Saneoka H, et al.The role of Na+ and K+ transporters in salt stress adaptation in glycophytes[J]. Frontiers in Physiology, 2017, 8:509. [55] Horie T, Sugawara M, Okada T, et al.Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells[J]. Journal of Bioscience and Bioengineering, 2011, 111(3):346-356. [56] Alemán F, Caballero F, Ródenas R, et al.The F130S point mutation in the Arabidopsis high-affinity K transporter AtHAK5 increases K over Na and Cs selectivity and confers Na and Cs tolerance to yeast under heterologous expression[J]. Frontiers in Plant Science, 2014, 5:430. [57] Maathuis FJ.The role of monovalent cation transporters in plant responses to salinity[J]. Journal of Experimental Botany, 2005, 57(5):1137-1147. [58] Yang H, Zhang W, Chai W, et al.PtHAK5, a candidate for mediating high-affinity K+ uptake in the halophytic grass, Puccinellia tenuiflora[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(1):108-117. [59] 车文利, 张书玲, 吴立柱, 等. 转 AlHAK1 基因棉花耐盐能力分析[J]. 中国农业科技导报, 2015, 17(1):49-56. Che WL, Zhang SL, Wu LZ, et al.Analysis of salt-tolerant ability in transgenic cotton(Gossypium hirsutum L.)with AlHAK1[J]. Journal of Agricultural Science and Technology, 2015, 17(1):49-56. [60] Walters DR, Bingham IJ.Influence of nutrition on disease development caused by fungal pathogens:implications for plant disease control[J]. Annals of Applied Biology, 2007, 151(3):307-324. [61] Römheld V, Kirkby EA.Research on potassium in agriculture:needs and prospects[J]. Plant and Soil, 2010, 335(1-2):155-180. [62] Fuchs WH, Grossmann F.Nutrition and resistance of crop plants against pathogens and pests[J]. Handbuch Der Pflanzenernahrung Und Dungung, 1972, 1(Part 2):1008-1107. [63] Jeworutzki E, Roelfsema MR, Anschütz U, et al.Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels[J]. The Plant Journal, 2010, 62(3):367-378. [64] Atkinson MM, Baker CJ.Alteration of plasmalemma sucrose transport in Phaseolus vulgaris by Pseudomonas syringae pv. syringae and its association with K+ /H+ exchange[J]. Phytopathology, 1987, 77(11):1573-1578. [65] Magnan F, Ranty B, Charpenteau M, et al.Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal, 2008, 56(4):575-589. [66] Leba LJ, Cheval C, Ortiz-Martín I, et al.CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway[J]. The Plant Journal, 2012, 71(6):976-989. [67] Leba LJ, Perochon A, Cheval C, et al.CML9, a multifunctional Arabidopsis thaliana calmodulin-like protein involved in stress responses and plant growth?[J]. Plant Signaling & Behavior, 2012, 7(9):1121-1124. [68] Brauer EK, Ahsan N, Dale R, et al.The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response[J]. Plant Physiology, 2016, 171(2):1470-1484. |