[1] |
Brinster RL, Harstad H . Energy metabolism in primordial germ cells of the mouse[J]. Experimental Cell Research, 1977, 109(1):111-117.
doi: 10.1016/0014-4827(77)90050-7
URL
|
[2] |
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 2011, 11:325-337.
doi: 10.1038/nrc3038
URL
|
[3] |
Zheng J. Energy metabolism of cancer:Glycolysis versus oxidative phosphorylation(Review)[J]. Oncology Letters, 2012, 4(6):1151-1157.
pmid: 23226794
|
[4] |
Hayashi Y, Otsuka K, Ebina M, et al. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells[J]. Proceedings of the National Academy of ences of the United States of America, 2017, 114(31):8289.
|
[5] |
Kanatsu-Shinohara M, Tanaka T, Ogonuki N, et al. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal[J]. Genes & Development, 2016, 30(23):2637.
doi: 10.1101/gad.287045.116
URL
|
[6] |
Folmes CL, Nelson T, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming[J]. Cell Metabolism, 2011, 14(2):264-271.
doi: 10.1016/j.cmet.2011.06.011
URL
|
[7] |
冯科珂, 刘晶锦, 姚其正. VK3及其类似物的抗肿瘤作用[J]. 国外医药:抗生素分册, 2009, 30(4):171-177.
|
|
Feng KK, Liu JJ, Yao QZ. The antineoplastic effect of vitamin K3 and its derivates [J]. World Notes on Antibiotics, 2009, 30(4):171-177.
|
[8] |
Chen J, Jiang Z, Wang B, et al. Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2[J]. Cancer Letter, 2012, 316(2):204-10.
doi: 10.1016/j.canlet.2011.10.039
URL
|
[9] |
Wu FY, Liao WC, Chang HM. Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two(MTT and SRB)cell viability assays[J]. Life Science, 1993, 52(22):1797-804.
|
[10] |
Hitomi M, Yokoyama F, Kita Y, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo[J]. International Journal of Oncology, 2005, 26(3):713-720.
|
[11] |
Giannoni E, Taddei ML, Morandi A, et al. Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread[J]. Oncotarget, 2015, 6(27):24061-24074.
pmid: 26183399
|
[12] |
Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metabolism, 2015, 21(1):65-80.
doi: 10.1016/j.cmet.2014.12.005
URL
|
[13] |
施青青, 张振韬, 李鹏程, 等. BMP4诱导鸡胚胎干细胞向雄性生殖细胞分化的研究[J]. 畜牧兽医学报, 2013, 44(11):1749-1757.
|
|
Shi QQ, Zhang ZT, Li PC, et al. Study on differentiation of chicken embryonic stem cells to male germ cells by BMP4[J]. Chinese Journal of Animal and Veterinary Sciences, 2013, 44(11), 1749-1757.
|
[14] |
于丹, 王莹, 高原, 等. Akt/GSK-3β/Snail通路在TGF-β_1诱导A549/DDP细胞上皮间质转化中的作用[J]. 中国病理生理杂志, 2018(6):1124-1128.
|
|
Yu D, Wang Y, Gao Y, et al. Effect of Akt/GSK-3β/Snail signaling pathway on EMT in A549/DDP cells mediated by TGF-β1[J]. Chinese Journal of Pathophysiology, 2018(6):1124-1128.
|
[15] |
杨海燕, 孙敏, 田智泉, 等. 鸡X期胚盘细胞分散培养与整胚培养比较初探[J]. 中国家禽, 2010, 32(7):14-17.
|
|
Yang HQ, Sui M, Tian ZQ, et al. Preliminary comparison of dispersed culture and whole embryo culture of chicken blastodermal cells on X period[J]. China Poultry, 2010, 32(7):14-17.
|
[16] |
靳锴, 汪怡临, 左其生, 等. 睾丸注射Mx-NA双基因制备抗病转基因鸡的研究[J]. 中国家禽, 2014, 36(14):8-12.
|
|
Jin K, Wang YL, Zuo QS, et al. Generation of disease-resistant transgenic chicken by testis-mediated injection method of combined Mx-NA gene[J]. China Poultry, 2014. 36(14):8-12.
|
[17] |
Yeung SJ, Pan J, Lee MH. Roles of p53, MYC, and HIF-1 in regulating glycolysis:the seventh hallmark of cancer[J]. Cellular and Molecular Life Sciences, 2008, 65:3981-3999.
doi: 10.1007/s00018-008-8224-x
pmid: 18766298
|
[18] |
Hsu PP, Sabatini DM. Cancer cell metabolism:Warburg and beyond[J]. Cell, 2008, 134:703-707.
doi: 10.1016/j.cell.2008.08.021
URL
|
[19] |
Graziano F, Ruzzo A, Giacomini E, Ricciardi T, et al. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer[J]. Pharmacogenomics, 2017, 17(3):258-264.
|
[20] |
Kakinuma Y, Miyauchi T, Suzuki T, et al. Enhancement of glycolysis in cardiomyocytes elevates endothelin-1 expression through the transcriptional factor hypoxia-inducible factor-1 alpha[J]. Clinical Science, 2002, 103(Suppl 48):210S-214S.
doi: 10.1042/CS103S210S
URL
|
[21] |
Zhou W, Choi M, Margineantu D, et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition[J]. EMBO Journal, 2014, 31(9):2103-2116.
doi: 10.1038/emboj.2012.71
URL
|
[22] |
Taper HS, de Gerlache J, Lans M, et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment[J]. International Journal of Cancer, 1987, 40:575-579.
pmid: 3666992
|
[23] |
Taper HS, Keyeux A, Roberfroid M. Potentiation of radiotherapy by nontoxic pretreatment with combined vitamins C and K3 in mice bearing solid transplantable tumor[J]. Anticancer Research, 1996, 16:499-503.
|
[24] |
Taper HS, Jamison JM, Gilloteaux J, et al. Inhibition of the development of metastases by dietary vitamin C:K3 combination[J]. Life Science, 2004, 75:955-967.
|
[25] |
De Loecker W, Janssens J, Bonte J, et al. Effects of sodium ascorbate(vitamin C)and 2-methyl-1, 4-naphtho-quinone(vitamin K3)treatment on human tumor cell growth in vitro, II:synergism with combined chemotherapy action[J]. Anticancer Research, 1993, 13:103-106.
|
[26] |
Sakagami H, Satoh K, Hakeda Y, et al. Apopto-sis-inducing activity of vitamin C and vitamin K[J]. Cellular and Molecular Biology, 2000, 46:129-143.
pmid: 10726979
|
[27] |
Jamison JM, Gilloteaux J, Taper HS, et al. Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer[J]. Journal of Nutrition, 2001, 131:158S-160S.
doi: 10.1093/jn/131.1.158S
URL
|
[28] |
Buc Calderon P, Cadrobbi J, Marques C, et al. Potential therapeutic application of the association of vitamins C and K3 in cancer treatment[J]. Current Medicinal Chemistry, 2002, 9:2271-2285.
doi: 10.2174/0929867023368674
URL
|
[29] |
Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice[J]. Biochem Pharmacol, 2006, 72:671-680.
doi: 10.1016/j.bcp.2006.05.025
URL
|
[30] |
Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(-ADP-ribose)polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemia cells[J]. International Journal of Cancer, 2007, 120:1192-1197.
doi: 10.1002/(ISSN)1097-0215
URL
|
[31] |
Kim YH, Heo JS, Han HJ. High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways[J]. Journal of Cellular Physiology, 2006, 209:94-102.
doi: 10.1002/(ISSN)1097-4652
URL
|
[32] |
Crespo FL, Sobrado VR, Gomez L, et al. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose[J]. Stem Cells, 2010, 28:1132-1142.
|
[33] |
Khoo MLM, McQuade LR, Smith MSR, et al. Growth and differentiation of embryoid bodies derived from human embryonic stem cells:Effect of glucose and basic fibroblast growth factor[J]. Biology of Reproduction, 2005, 73:1147-1156.
doi: 10.1095/biolreprod.104.036673
URL
|
[34] |
Chae HD, Lee MR, Broxmeyer HE. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G1/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation[J]. Stem Cells, 2012, 30(2):140-149.
doi: 10.1002/stem.778
URL
|
[35] |
Hayashi Y, Otsuka K, Ebina M, et al. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells[J]. Proceedings of the National Academy of ences of the United States of America, 2017, 114(31):8289.
|