生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 195-203.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1595
李婷婷(), 邓旭辉, 李若尘, 刘红军, 沈宗专(), 李荣, 沈其荣
收稿日期:
2021-12-25
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
李婷婷,女,硕士研究生,研究方向:有机肥与土壤微生物;E-mail:基金资助:
LI Ting-ting(), DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan(), LI Rong, SHEN Qi-rong
Received:
2021-12-25
Published:
2022-10-26
Online:
2022-11-11
摘要:
土壤真菌群落对于维持土壤地力及作物健康有着重要的作用,但青枯病发生对土壤真菌群落影响的研究仍相对较少。应用实时荧光定量PCR及MiSeq高通量测序技术,研究了罹患青枯病与未患病番茄植株土体和根际的真菌群落组成。青枯病发生明显改变了番茄土体与根际土壤的真菌群落组成。与未患病根际土壤相比,患病番茄根际土壤的真菌丰度、Chao1值及Shannon值显著降低;潜在土著有益真菌如粘鞭霉属、被孢霉属、顶孢霉属和木霉属的相对丰度显著降低,而有害真菌镰刀菌属的相对丰度显著增加。综上,细菌性青枯病发生影响了土壤真菌群落的组成,其真菌丰度、多样性及土著有益真菌数量降低,而有害真菌数量增加,为阐明土传青枯病发生的微生态机制提供了一定的理论指导。
李婷婷, 邓旭辉, 李若尘, 刘红军, 沈宗专, 李荣, 沈其荣. 番茄青枯病发生对土壤真菌群落多样性的影响[J]. 生物技术通报, 2022, 38(10): 195-203.
LI Ting-ting, DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan, LI Rong, SHEN Qi-rong. Effects of Ralstonia solanacearum Infection on Soil Fungal Community Diversity[J]. Biotechnology Bulletin, 2022, 38(10): 195-203.
图1 罹病与健康番茄土体及根际土壤真菌丰度 BD:罹病番茄土体土壤;BH:健康番茄土体土壤;RD:罹病番茄根际土壤;RH:健康番茄根际土壤。***、**、*表示处理之间在P < 0.001、P < 0.01、P < 0.05水平上存在显著差异。下同
Fig.1 Fungal abundance in bulk and rhizosphere soils cropped with diseased and non-diseased tomato BD:Diseased tomato bulk soil;BH:non-diseased tomato bulk soil;RD:diseased tomato rhizosphere soil;RH:non-diseased tomato rhizosphere soil. ***,**,and * indicate that there are significant differences between the treatments at the levels of P <0.001,P <0.01,and P <0.05. The same below
图2 罹病与健康番茄土体及根际土壤真菌群落多样性指数
Fig.2 Diversity index for fungal communities in the bulk and rhizosphere soils cropped with diseased and non-diseased tomato
图3 罹病与健康番茄土体及根际土壤真菌群落主成分图
Fig.3 Principal coordinate analysis(PCoA)for fungal communities in the bulk and rhizosphere soils cropped with diseased and non-diseased tomato
图4 罹病与健康番茄土体及根际土壤真菌优势目的堆积图(a)和差异分析(b)
Fig.4 Relative abundances of dominated orders for fungal communities in the bulk(a)and rhizosphere soils crop-ped with diseased and non-diseased tomato(b)
图5 罹病与健康番茄土体及根际土壤真菌组成维恩图(a)与部分优势属的相对丰度热图(b) 热图单元格中颜色表示该属在土壤中的相对丰度。热图的聚类依据各样品中属的相对丰度聚类而成
Fig.5 Venn plot of fungal composition (a) and relative abu-ndances heatmap (b) of partial dominated genera for fungal communities in the bulk and rhizosphere soils cropped with diseased and non-diseased tomato The colors in the heat map cell indicate the relative abundances of the genera in the soil. The clustering of the heat map is based on the relative abundances of the genera in each sample
图6 罹病与健康番茄土体(a)及根际土壤真菌OTU火山图(b) 图中灰色圆点表示该OTU在罹病与健康处理间无显著差异。红色圆点表示该OTU在罹病处理中显著增加,而蓝色圆点表示该OTU在罹病处理中显著减少
Fig. 6 Volcano plot of fungal OTUs in the bulk(a)and rhizosphere soils(b)cropped with diseased and non-diseased soils tomato The gray dot in the figure indicates that the OTU has no significant difference between the diseased and non-diseased treatments. The red dot indicates that the OTU significantly increased in the diseased treatment,and the blue dot indicates that the OTU significantly reduced in the diseased treatment
[1] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
Jiang J, Song MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chin J Plant Ecol, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
|
[2] |
Atkinson D, Watson CA. The Beneficial Rhizosphere:a dynamic entity[J]. Appl Soil Ecol, 2000, 15(2):99-104.
doi: 10.1016/S0929-1393(00)00084-6 URL |
[3] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[4] | Flint ML, Dreistadt SH. Natural enemies handbook:the illustrated guide to biological pest control[M]. California: University of California Press, 1998. |
[5] |
Bonilla N, Cazorla FM, Martínez-Alonso M, et al. Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils[J]. Plant Soil, 2012, 357(1/2):215-226.
doi: 10.1007/s11104-012-1155-1 URL |
[6] |
Zhao S, Chen X, Deng SP, et al. The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on Chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties[J]. Molecules, 2016, 21(4):526.
doi: 10.3390/molecules21040526 URL |
[7] |
Yao HY, Jiao XD, Wu FZ. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity[J]. Plant Soil, 2006, 284(1/2):195-203.
doi: 10.1007/s11104-006-0023-2 URL |
[8] | 耿士均, 刘刊, 商海燕, 等. 园艺作物连作障碍的研究进展[J]. 北方园艺, 2012(7):190-195. |
Geng SJ, Liu K, Shang HY, et al. Research progress of continuous cropping obstacle in horticultural plants[J]. North Hortic, 2012(7):190-195. | |
[9] | 张瑞福, 沈其荣. 抑病型土壤的微生物区系特征及调控[J]. 南京农业大学学报, 2012, 35(5):125-132. |
Zhang RF, Shen QR. Characterization of the microbial flora and management to induce the disease suppressive soil[J]. J Nanjing Agric Univ, 2012, 35(5):125-132. | |
[10] |
Ventura W, Watanabe I. Growth inhibition due to continuous cropping of dryland rice and other crops[J]. Soil Sci Plant Nutr, 1978, 24(3):375-389.
doi: 10.1080/00380768.1978.10433117 URL |
[11] | Sun YY, Jiang GY, Wei XC, et al. Autotoxicity effects of soils continuously cropped with tomato[J]. Allelopathy J, 2011, 28(2):135-144. |
[12] | 马宁宁, 李天来. 设施番茄长期连作土壤微生物群落结构及多样性分析[J]. 园艺学报, 2013, 40(2):255-264. |
Ma NN, Li TL. Effect of long-term continuous cropping of protected tomato on soil microbial community structure and diversity[J]. Acta Hortic Sin, 2013, 40(2):255-264. | |
[13] | 康亚龙, 景峰, 孙文庆, 等. 加工番茄连作对土壤理化性状及微生物量的影响[J]. 土壤学报, 2016, 53(2):533-542. |
Kang YL, Jing F, Sun WQ, et al. Effects of continuous cropping of processing tomato on physical-chemical properties of and microbial biomass in the soil[J]. Acta Pedol Sin, 2016, 53(2):533-542. | |
[14] |
Buddenhagen I, Kelman A. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum[J]. Annu Rev Phytopathol, 1964, 2:203-230.
doi: 10.1146/annurev.py.02.090164.001223 URL |
[15] |
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex[J]. Annu Rev Phytopathol, 2012, 50:67-89.
doi: 10.1146/annurev-phyto-081211-173000 URL |
[16] |
Salanoubat M, Genin S, Artiguenave F, et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J]. Nature, 2002, 415(6871):497-502.
doi: 10.1038/415497a URL |
[17] |
Wei Z, Yang TJ, Friman VP, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nat Commun, 2015, 6:8413.
doi: 10.1038/ncomms9413 pmid: 26400552 |
[18] |
Deng XH, Zhang N, Shen ZZ, et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease[J]. Appl Soil Ecol, 2020, 147:103364.
doi: 10.1016/j.apsoil.2019.103364 URL |
[19] |
Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513-1520.
doi: 10.1038/s41587-019-0328-3 pmid: 31792408 |
[20] |
Xiong W, Song YQ, Yang KM, et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27.
doi: 10.1186/s40168-020-00799-9 pmid: 32127034 |
[21] |
Liu T, Chen XY, Hu F, et al. Carbon-rich organic fertilizers to increase soil biodiversity:evidence from a meta-analysis of nematode communities[J]. Agric Ecosyst Environ, 2016, 232:199-207.
doi: 10.1016/j.agee.2016.07.015 URL |
[22] | 沈宗专, 黄炎, 操一凡, 等. 健康与罹患青枯病的番茄土壤细菌群落特征比较[J]. 土壤, 2021, 53(1):5-12. |
Shen ZZ, Huang Y, Cao YF, et al. Comparison of bacterial communities in bulk and rhizosphere soils of healthy and diseased tomato infected by bacterial wilt[J]. Soils, 2021, 53(1):5-12. | |
[23] |
Hu QL, Tan L, Gu SS, et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. NPJ Biofilms Microbiomes, 2020, 6(1):8.
doi: 10.1038/s41522-020-0117-2 URL |
[24] |
Odelade KA, Babalola OO. Bacteria, fungi and Archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity[J]. Int J Environ Res Public Health, 2019, 16(20):3873.
doi: 10.3390/ijerph16203873 URL |
[25] |
Lazcano C, Boyd E, Holmes G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Sci Rep, 2021, 11(1):3188.
doi: 10.1038/s41598-021-82768-2 pmid: 33542451 |
[26] |
Deveau A, Bonito G, Uehling J, et al. Bacterial-fungal interactions:ecology, mechanisms and challenges[J]. FEMS Microbiol Rev, 2018, 42(3):335-352.
doi: 10.1093/femsre/fuy008 URL |
[27] |
Shen ZZ, Penton CR, Lv NN, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb Ecol, 2018, 75(3):739-750.
doi: 10.1007/s00248-017-1052-5 URL |
[28] |
Zhou X, Wang JT, Wang WH, et al. Changes in bacterial and fungal microbiomes associated with tomatoes of healthy and infected by Fusarium oxysporum f. sp. lycopersici[J]. Microb Ecol, 2021, 81(4):1004-1017.
doi: 10.1007/s00248-020-01535-4 URL |
[29] |
Wang R, Zhang HC, Sun LG, et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Sci Rep, 2017, 7(1):343.
doi: 10.1038/s41598-017-00472-6 pmid: 28336973 |
[30] |
Fierer N, Jackson JA, Vilgalys R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Appl Environ Microbiol, 2005, 71(7):4117-4120.
doi: 10.1128/AEM.71.7.4117-4120.2005 URL |
[31] |
Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Appl Environ Microbiol, 2013, 79(17):5112-5120.
doi: 10.1128/AEM.01043-13 URL |
[32] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[33] |
Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16):5261-5267.
doi: 10.1128/AEM.00062-07 URL |
[34] |
Lynch JM. The rhizosphere—form and function[J]. Appl Soil Ecol, 1994, 1(3):193-198.
doi: 10.1016/0929-1393(94)90010-8 URL |
[35] |
Chang JJ, Sun Y, Tian L, et al. The structure of rhizosphere fungal communities of wild and domesticated rice:changes in diversity and co-occurrence patterns[J]. Front Microbiol, 2021, 12:610823.
doi: 10.3389/fmicb.2021.610823 URL |
[36] |
刘洪, 董元华, 申民翀, 等. 番茄青枯病抑病土壤根际微生物群落特征及其抑制性传递机制[J]. 土壤学报, 2021. DOI:10.11766/trxb202101200037.
doi: 10.11766/trxb202101200037 |
Liu H, Dong YH, Shen MC, et al. Characteristics of tomato bacterial wilt disease-suppressive soil rhizosphere microbial community and its inhibitory transmission mechanism[J]. Acta Pedologica Sinica, 2021. DOI:10.11766/trxb202101200037.
doi: 10.11766/trxb202101200037 |
|
[37] |
李玉娇, 刘星, 吴大付, 等. 温室黄瓜连作对土壤真菌数量和群落结构的影响[J]. 华北农学报, 2020, 35(1):194-204.
doi: 10.7668/hbnxb.20190712 |
Li YJ, Liu X, Wu DF, et al. Effects of continuous cropping of greenhouse cucumber on soil fungal abundance and community structure Province[J]. Acta Agric Boreali Sin, 2020, 35(1):194-204. | |
[38] |
Garrido-Jurado I, Fernández-Bravo M, Campos C, et al. Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems[J]. J Invertebr Pathol, 2015, 130:97-106.
doi: 10.1016/j.jip.2015.06.001 pmid: 26146223 |
[39] | Liu LL, Huang XQ, Zhao J, et al. Characterizing the key agents in a disease-suppressed soil managed by reductive soil disinfestation[J]. Appl Environ Microbiol, 2019, 85(7):e02992-e02918. |
[40] |
Zhang J, Yang ZQ, Liang Y, et al. Four new C9 metabolites from the sponge-associated fungus Gliomastix sp. ZSDS1-F7-2[J]. Mar Drugs, 2018, 16(7):231.
doi: 10.3390/md16070231 URL |
[41] |
Li F, Chen L, Redmile-Gordon M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degrad Dev, 2018, 29(6):1642-1651.
doi: 10.1002/ldr.2965 URL |
[42] |
Xiong W, Li R, Ren Y, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of Vanilla Fusarium wilt disease[J]. Soil Biol Biochem, 2017, 107:198-207.
doi: 10.1016/j.soilbio.2017.01.010 URL |
[43] |
Assress HA, Selvarajan R, Nyoni H, et al. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants[J]. Sci Rep, 2019, 9(1):14056.
doi: 10.1038/s41598-019-50624-z pmid: 31575971 |
[44] |
Rabea EI, Badawy MET, Stevens CV, et al. Chitosan as antimicrobial agent:applications and mode of action[J]. Biomacromolecules, 2003, 4(6):1457-1465.
doi: 10.1021/bm034130m URL |
[45] |
Cai F, Yu GH, Wang P, et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiol Biochem, 2013, 73:106-113.
doi: 10.1016/j.plaphy.2013.08.011 URL |
[46] |
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma—a genomic perspective[J]. Microbiology, 2012, 158(Pt 1):35-45.
doi: 10.1099/mic.0.053629-0 pmid: 21998165 |
[47] |
Adnan M, Islam W, Shabbir A, et al. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus[J]. Microb Pathog, 2019, 129:7-18.
doi: 10.1016/j.micpath.2019.01.042 URL |
[48] | 乔帆, 陈汉清, 李恒, 等. 与尖孢镰刀菌枯萎病相关的抑病型土壤研究进展[J]. 热带作物学报, 2019, 40(8):1665-1670. |
Qiao F, Chen HQ, Li H, et al. Advances in research on disease suppressive soils related to Fusarium oxysporum wilt[J]. Chin J Trop Crops, 2019, 40(8):1665-1670. | |
[49] |
Takken F, Rep M. The arms race between tomato and Fusarium oxysporum[J]. Mol Plant Pathol, 2010, 11(2):309-314.
doi: 10.1111/j.1364-3703.2009.00605.x pmid: 20447279 |
[50] | Jacobs JM, Babujee L, Meng FH, et al. The in planta transcriptome of Ralstonia solanacearum:conserved physiological and virulence strategies during bacterial wilt of tomato[J]. mBio, 2012, 3(4):e00114-e00112. |
[51] |
Siddiqui ZA, Futai K. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure[J]. Pest Manag Sci, 2009, 65(9):943-948.
doi: 10.1002/ps.1777 pmid: 19431151 |
[52] |
Dita M, Barquero M, Heck D, et al. Fusarium wilt of banana:current knowledge on epidemiology and research needs toward sustainable disease management[J]. Front Plant Sci, 2018, 9:1468.
doi: 10.3389/fpls.2018.01468 URL |
[53] | 赖朝圆. 轮作缓解香蕉连作生物障碍的效应及机制研究[D]. 海口: 海南大学, 2018. |
Lai CY. Research on the effect and mechanism of relieve banana continuous cropping obstacles by crop rotation[D]. Haikou: Hainan University, 2018. | |
[54] |
Liu HJ, Xiong W, Zhang RF, et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant Soil, 2018, 423(1/2):229-240.
doi: 10.1007/s11104-017-3504-6 URL |
[55] |
Deng XH, Zhang N, Shen ZZ, et al. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum[J]. NPJ Biofilms Microbiomes, 2021, 7(1):33.
doi: 10.1038/s41522-021-00204-9 URL |
[56] |
Cheng HY, Zhang DQ, Ren LR, et al. Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield[J]. Environ Pollut, 2021, 283:117160.
doi: 10.1016/j.envpol.2021.117160 URL |
[1] | 邹雪峰, 李铭刚, 包玲风, 陈齐斌, 赵江源, 汪林, 濮永瑜, 郝大程, 张庆, 杨佩文. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138. |
[2] | 李俊领, 马晓寒, 张豫丹, 贾玮, 许自成. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99. |
[3] | 王孝芳, 侯玉刚, 杨可铭, 王佳宁, 韦中, 徐阳春, 沈其荣. 一株青枯菌专性噬菌体的分离及应用效果研究[J]. 生物技术通报, 2020, 36(9): 194-201. |
[4] | 郭璟, 谢占玲, 罗涛, 薛治峰, 郭建娟, 李发雄, 张秀娟. 黄绿卷毛菇生境中矮嵩草内生真菌多样性比较研究[J]. 生物技术通报, 2019, 35(11): 109-117. |
[5] | 张世伟, 陈曦, 钟其顶, 黄占斌, 孟镇, 罗金学, 石玲, 白志辉. 不同品种酿酒葡萄表皮微生物群落多样性分析[J]. 生物技术通报, 2017, 33(3): 128-137. |
[6] | 王艳云, 郭笃发. 应用高通量测序技术研究柽柳、獐茅土壤真菌多样性[J]. 生物技术通报, 2016, 32(7): 48-53. |
[7] | 蔡刘体,汪汉成,刘艳霞,曹毅,袁赛飞,赵准备,石俊雄. 青枯菌种内分型研究进展[J]. 生物技术通报, 2013, 0(7): 20-23. |
[8] | . 《马铃薯抗菌肽基因工程》[J]. , 1997, 0(03): 43-43. |
[9] | 孙国凤;. 分离出消除青枯病病原的质粒[J]. , 1991, 0(11): 19-19. |
[10] | 孙国凤;. 麒麟啤酒公司再生马铃薯和番茄的融合植株成功[J]. , 1988, 0(03): 14-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||