生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 181-188.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1251
张祖霖1,2(), 刘方芳1,2, 周青鸟1,2, 赵瑞强1,2, 贺菽嘉1,2, 林文珍1,2(
)
收稿日期:
2022-10-11
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
林文珍,女,教授,研究方向:肿瘤细胞与分子生物学;E-mail: linwenzhen@msn.com作者简介:
张祖霖,男,硕士研究生,研究方向:肾素血管紧张素系统与肝细胞癌的关系;E-mail: 1343381135@qq.com
基金资助:
ZHANG Zu-lin1,2(), LIU Fang-fang1,2, ZHOU Qing-niao1,2, ZHAO Rui-qiang1,2, HE Shu-jia1,2, LIN Wen-zhen1,2(
)
Received:
2022-10-11
Published:
2023-06-26
Online:
2023-07-07
摘要:
利用CRISPR-Cas9基因编辑技术敲除人Huh7肝癌细胞的血管紧张素转化酶2(ACE2)基因,构建ACE2基因敲除细胞株,为研究ACE2在肝细胞癌的作用提供细胞模型。首先,对ACE2结构域进行鉴定,利用在线网站设计两条破坏所有结构域、靶向作用于ACE2外显子的sgRNA。其次,构建重组载体并转染肝癌细胞Huh7,嘌呤霉素筛选出单克隆细胞株。最后,免疫印迹鉴定敲除效果。结构域鉴定结果显示,在340-520号氨基酸位置存在Zn结合位点和激活位点,根据sgRNA靶点设计原则,采用片段敲除的方式,针对ACE2的第9、第10外显子设计两对sgRNA,并成功构建PX459-ACE2-sgRNA重组质粒。嘌呤霉素成功筛选出单克隆细胞株,并测序证实了发生片段敲除,ACE2蛋白在敲除细胞株中不表达;成功构建ACE2敲除的Huh7细胞株,为日后研究ACE2在肝细胞癌的发生机制奠定基础。
张祖霖, 刘方芳, 周青鸟, 赵瑞强, 贺菽嘉, 林文珍. 基于CRISPR/Cas9技术构建与鉴定敲除ACE2基因的Huh7肝癌细胞株[J]. 生物技术通报, 2023, 39(6): 181-188.
ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology[J]. Biotechnology Bulletin, 2023, 39(6): 181-188.
名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
U6-F | ATGGACTATCATATGCTTACCGTA |
CMV-R | TCGTTGGGCGGTCAGC |
验证-F Verification-F | GACGACTTCCTGACAGCTCATCAT |
验证-R Verification-R | AGTGTCACCTGACCCAAGGAAAT |
表1 测序引物和PCR序列
Table 1 Sequencing primers and PCR sequences
名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
U6-F | ATGGACTATCATATGCTTACCGTA |
CMV-R | TCGTTGGGCGGTCAGC |
验证-F Verification-F | GACGACTTCCTGACAGCTCATCAT |
验证-R Verification-R | AGTGTCACCTGACCCAAGGAAAT |
图1 鉴定出的ACE2结构域 A: NCBI CD-search鉴定的ACE2结构域,红框标出主要结构域;B:Esembl数据库查找ACE2最大转录本编码的蛋白质结构域,红框标出第9、10外显子及其所在的结构域
Fig. 1 Identified ACE2 domain A: ACE2 domain identified by NCBI CD-search, with major domains marked in red boxes. B: The Esembl database searches for the protein domain encoded by the largest transcript of ACE2. Exons 9 and 10 and their domain are marked in red boxes
sgRNA | 序列Sequence(5'-3') |
---|---|
sgRNA1F | CACCGATCGGGTGACAGAAGACCAA |
sgRNA1R | AAACTTGGTCTTCTGTCACCCGATC |
sgRNA2F | CACCGTCGTGAGTGCTTGTTTGAGC |
sgRNA2R | AAACGCTCAAACAAGCACTCACGAC |
表2 靶向ACE2基因的两条sgRNA序列
Table 2 Sequences of two sgRNAs targeting ACE2 gene
sgRNA | 序列Sequence(5'-3') |
---|---|
sgRNA1F | CACCGATCGGGTGACAGAAGACCAA |
sgRNA1R | AAACTTGGTCTTCTGTCACCCGATC |
sgRNA2F | CACCGTCGTGAGTGCTTGTTTGAGC |
sgRNA2R | AAACGCTCAAACAAGCACTCACGAC |
图2 两条sgRNA寡核苷酸片段特异性评分和脱靶分析 A:sgRNA1特异性评分及脱靶分析;B:sgRNA2特异性评分及脱靶分析
Fig. 2 Specificity score and off-target analysis of two sgRNA oligonucleotide fragments A: sgRNA1 specific score and off-target analysis; B: sgRNA2 specific score and off-target analysis
图3 PX459-sgRNA重组载体菌落验证 M: DL500 DNA marker;1-8泳道为PX459-ACE2-sgRNA1; 9-16泳道为PX459-ACE2-sgRNA2
Fig. 3 Colony validation of PX459-sgRNA recombinant vector M: DL500 DNA marker. Lane 1 to 8 are PX459-ACE2-sgRNA1. Lane 9 to 16 are PX459-ACE2-sgRNA2
图4 重组质粒菌液双向测序结果 A:PX459-ACE2-sgRNA1测序峰图;B:PX459-ACE2-sgRNA2测序峰图
Fig. 4 Results of bidirectional sequencing of recombinant plasmid liquid A: PX459-ACE2-sgRNA1 sequencing peaks. B: PX459-ACE2-sgRNA2 sequencing peaks
图5 琼脂糖凝胶电泳验证基因编辑效果 M:DL10000 marker;1-5泳道分别为:Huh7野生型;PXNC(对照组);PX1#、PX2#、PX3#(敲除组)
Fig. 5 Agarose gel electrophoresis to verify the effect of gene editing M: DL10000 marker. Lane 1-5 are Huh7 wild-type; PXNC(control group); PX1 #, PX2 #, PX3#(knockout group)
图6 基因编辑结果 A: PXNC(对照组)基因片段;B: PX2#(敲除组)在sgRNA作用于特定外显子后,造成基因片段缺失,以非同源重组的方式连接形成修复的DNA片段;C: Blast比对片段敲除的PX2#单克隆细胞株和PXNC测序结果,部分外显子和内含子的碱基序列缺失,红色为编辑后的PX2#基因序列;与PXNC相比,片段敲除的PX2#基因断裂
Fig. 6 Results of gene editing A: PXNC(control group)gene fragment. B: PX2#(knockout group), gene fragment deletion after sgRNA acts on specific exons, which is connected to form repaired DNA fragment by non-homologous recombination. C: Blast comparison of PX2# monoclonal cell line and PXNC sequencing results showed that some exons and introns were missing, and the edited PX2# gene sequence was shown in red. Compared with PXNC, the PX2# gene with fragment knockout was fragmented
[1] |
Zhang RK, Liu JL. Screening the genome for HCC-specific CpG methylation signatures as biomarkers for diagnosis and prognosis evaluation[J]. BMC Med Genomics, 2021, 14(1): 163.
doi: 10.1186/s12920-021-01015-9 |
[2] |
Chao JS, Zhao SL, Sun HC. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications[J]. Am J Transl Res, 2020, 12(5): 2099-2109.
pmid: 32509204 |
[3] |
Moon H, Ro SW. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers, 2021, 13(12): 3026.
doi: 10.3390/cancers13123026 URL |
[4] |
Xu JJ, Fan JS, Wu F, et al. The ACE2/angiotensin-(1-7)/mas receptor axis: pleiotropic roles in cancer[J]. Front Physiol, 2017, 8: 276.
doi: 10.3389/fphys.2017.00276 pmid: 28533754 |
[5] |
de Paula Gonzaga ALAC, Palmeira VA, Ribeiro TFS, et al. ACE2/angiotensin-(1-7)/mas receptor axis in human cancer: potential role for pediatric tumors[J]. Curr Drug Targets, 2020, 21(9): 892-901.
doi: 10.2174/1389450121666200210124217 pmid: 32039680 |
[6] |
Ender SA, Dallmer A, Lässig F, et al. Expression and function of the ACE2/angiotensin(1-7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS[J]. Mol Med Rep, 2014, 10(2): 804-810.
doi: 10.3892/mmr.2014.2266 pmid: 24858078 |
[7] |
Zhang Q, Lu SH, Li TF, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 173.
doi: 10.1186/s13046-019-1156-5 |
[8] |
Zhang ZL, Li L, Li MY, et al. The SARS-CoV-2 host cell receptor ACE2 correlates positively with immunotherapy response and is a potential protective factor for cancer progression[J]. Comput Struct Biotechnol J, 2020, 18: 2438-2444.
doi: 10.1016/j.csbj.2020.08.024 URL |
[9] |
Li MY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues[J]. Infect Dis Poverty, 2020, 9(1): 45.
doi: 10.1186/s40249-020-00662-x |
[10] |
Ye GX, Qin Y, Lu XH, et al. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2015, 459(1): 18-23.
doi: 10.1016/j.bbrc.2015.02.030 URL |
[11] |
Huang ML, Li X, Meng Y, et al. Upregulation of angiotensin-converting enzyme(ACE)2 in hepatic fibrosis by ACE inhibitors[J]. Clin Exp Pharmacol Physiol, 2010, 37(1): e1-e6.
doi: 10.1111/cep.2009.37.issue-1 URL |
[12] |
Salmenkari H, Korpela R, Vapaatalo H. Renin-angiotensin system in intestinal inflammation-Angiotensin inhibitors to treat inflammatory bowel diseases?[J]. Basic Clin Pharmacol Toxicol, 2021, 129(3): 161-172.
doi: 10.1111/bcpt.v129.3 URL |
[13] |
Amano H, Ito Y, Ogawa F, et al. Angiotensin II type 1A receptor signaling facilitates tumor metastasis formation through P-selectin-mediated interaction of tumor cells with platelets and endothelial cells[J]. Am J Pathol, 2013, 182(2): 553-564.
doi: 10.1016/j.ajpath.2012.10.026 pmid: 23219751 |
[14] |
Xu ZW, Yan SX, Wu HX, et al. The influence of TNF-α and Ang II on the proliferation, migration and invasion of HepG2 cells by regulating the expression of GRK2[J]. Cancer Chemother Pharmacol, 2017, 79(4): 747-758.
doi: 10.1007/s00280-017-3267-z URL |
[15] |
Huang MM, Guo AB, Sun JF, et al. Angiotensin II promotes the progression of human gastric cancer[J]. Mol Med Rep, 2014, 9(3): 1056-1060.
doi: 10.3892/mmr.2014.1891 URL |
[16] |
Wen SW, Ager EI, Neo J, et al. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases[J]. Cancer Biol Ther, 2013, 14(8): 720-727.
doi: 10.4161/cbt.25092 pmid: 23792575 |
[17] |
Yu CH, Tang W, Wang YH, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry[J]. Cancer Lett, 2016, 376(2): 268-277.
doi: 10.1016/j.canlet.2016.04.006 pmid: 27063099 |
[18] |
Zhou L, et al. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy[J]. Cancer Lett, 2011, 307(1): 18-25.
doi: S0304-3835(11)00161-3 pmid: 21481527 |
[19] |
Zong HJ, Yin BB, Zhou HD, et al. Loss of angiotensin-converting enzyme 2 promotes growth of gallbladder cancer[J]. Tumour Biol, 2015, 36(7): 5171-5177.
doi: 10.1007/s13277-015-3171-2 URL |
[20] |
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636.
doi: 10.1016/j.lfs.2019.116636 URL |
[21] | Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system[J]. Methods Mol Biol, 2015, 1239(11): 197-217. |
[1] | 周文汉, 郑康宁, 李永民. 瑞香狼毒降低YAP1表达抑制肝癌细胞增殖的作用[J]. 生物技术通报, 2023, 39(7): 316-324. |
[2] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
[3] | 魏之菡, 法博涛, 俞章盛. 多基因模型在肝细胞癌预后中的应用[J]. 生物技术通报, 2020, 36(5): 183-192. |
[4] | 刘文荣,丁若凡,张一鸣,李宇鹏,李玲,郭志云. 抗肿瘤多肽9R-P201诱导下的肝癌HepG2细胞转录组测序分析[J]. 生物技术通报, 2017, 33(7): 210-215. |
[5] | 李宇鹏,张一鸣,胡海碧,康成宇,李牧洲,郭志云. 肝癌细胞HepG2中p53调控miRNA-3661的生物信息分析与功能验证[J]. 生物技术通报, 2017, 33(7): 216-223. |
[6] | 杨亚蓝, 郭志云, 丁若凡, 茆灿泉, 郭建秀, 熊莉丽. 阿霉素诱导下的肝癌细胞HepG2中微小RNA差异表达分析[J]. 生物技术通报, 2016, 32(6): 244-249. |
[7] | 赵颖华,孙薇. 肝癌转基因小鼠模型的应用研究进展[J]. 生物技术通报, 2015, 31(12): 56-62. |
[8] | 程华;闫静辉;. Glypican-3与肿瘤关系的研究进展[J]. , 2010, 0(02): 33-37. |
[9] | 王颖. 日本人发现天然HGF的调控剂injurin[J]. , 1992, 0(11): 14-15. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 666
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||