[1] |
Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis[J]. Lancet, 2010, 375(9725): 1545-1555.
doi: 10.1016/S0140-6736(10)60206-1
pmid: 20399493
|
[2] |
Li Y, Wang X, Blau DM, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis[J]. Lancet, 2022, 399(10340): 2047-2064.
doi: 10.1016/S0140-6736(22)00478-0
pmid: 35598608
|
[3] |
Li ZJ, Zhang HY, Ren LL, et al. Etiological and epidemiological features of acute respiratory infections in China[J]. Nat Commun, 2021, 12(1): 5026.
|
[4] |
Ren LS, Lin L, Zhang H, et al. Epidemiological and clinical characteristics of respiratory syncytial virus and influenza infections in hospitalized children before and during the COVID-19 pandemic in Central China[J]. Influenza Other Respir Viruses, 2023, 17(2): e13103.
|
[5] |
Di Mattia G, Nenna R, Mancino E, et al. During the COVID-19 pandemic where has respiratory syncytial virus gone?[J]. Pediatr Pulmonol, 2021, 56(10): 3106-3109.
|
[6] |
Foley DA, Yeoh DK, Minney-Smith CA, et al. The interseasonal resurgence of respiratory syncytial virus in Australian children following the reduction of coronavirus disease 2019-related public health measures[J]. Clin Infect Dis, 2021, 73(9): e2829-e2830.
|
[7] |
Larsson E, Johansson S, Frøbert O, et al. Evaluation of the ImmuView RSV test for rapid detection of respiratory syncytial virus in adult patients with influenza-like symptoms[J]. Microbiol Spectr, 2021, 9(3): e0093721.
|
[8] |
Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment[J]. Clin Microbiol Rev, 2017, 30(1): 277-319.
pmid: 27903593
|
[9] |
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and Archaea[J]. Science, 2010, 327(5962): 167-170.
doi: 10.1126/science.1179555
pmid: 20056882
|
[10] |
Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245
pmid: 29449511
|
[11] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444.
doi: 10.1126/science.aaq0179
pmid: 29449508
|
[12] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442.
doi: 10.1126/science.aam9321
pmid: 28408723
|
[13] |
Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4: 20.
|
[14] |
Gong L, Wang XW, Li Z, et al. Integrated trinity test with RPA-CRISPR/Cas12a-fluorescence for real-time detection of respiratory syncytial virus A or B[J]. Front Microbiol, 2022, 13: 819931.
|
[15] |
Gao HD, Du Y, Chai Q, et al. A multiplex recombinase polymerase amplification assay combined with CRISPR/Cas12a for the detection of respiratory syncytial virus and respiratory adenovirus[J]. J Int Med Res, 2024, 52(1): 3000605231223083.
|
[16] |
Zhou HF, Tsou JH, Chinthalapally M, et al. Detection and differentiation of SARS-CoV-2, influenza, and respiratory syncytial viruses by CRISPR[J]. Diagnostics, 2021, 11(5): 823.
|
[17] |
Liu SH, Huang MQ, Xu YN, et al. CRISPR/Cas12a technology combined with RT-ERA for rapid and portable SARS-CoV-2 detection[J]. Virol Sin, 2021, 36(5): 1083-1087.
doi: 10.1007/s12250-021-00406-7
pmid: 34076866
|
[18] |
Yang KK, Liang YQ, Li YN, et al. Reverse transcription-enzymatic recombinase amplification coupled with CRISPR-Cas12a for rapid detection and differentiation of PEDV wild-type strains and attenuated vaccine strains[J]. Anal Bioanal Chem, 2021, 413(30): 7521-7529.
doi: 10.1007/s00216-021-03716-7
pmid: 34686895
|
[19] |
Yang KK, Zhang WY, Xu L, et al. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection[J]. Poult Sci, 2022, 101(12): 102208.
|
[20] |
Zhang WY, Xu L, Liu Q, et al. Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection[J]. Mol Cell Probes, 2021, 59: 101763.
|
[21] |
Shinoda H, Iida T, Makino A, et al. Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis[J]. Commun Biol, 2022, 5(1): 473.
doi: 10.1038/s42003-022-03433-6
pmid: 35614128
|
[22] |
Haddadin Z, Beveridge S, Fernandez K, et al. Respiratory syncytial virus disease severity in young children[J]. Clin Infect Dis, 2021, 73(11): e4384-e4391.
|
[23] |
Borchers AT, Chang C, Gershwin ME, et al. Respiratory syncytial virus—a comprehensive review[J]. Clin Rev Allergy Immunol, 2013, 45(3): 331-379.
|
[24] |
Paul R, Ostermann E, Wei QS. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases[J]. Biosens Bioelectron, 2020, 169: 112592.
|
[25] |
Nie K, Qi SX, Zhang Y, et al. Evaluation of a direct reverse transcription loop-mediated isothermal amplification method without RNA extraction for the detection of human enterovirus 71 subgenotype C4 in nasopharyngeal swab specimens[J]. PLoS One, 2012, 7(12): e52486.
|
[26] |
Zhu HL, Zhang HQ, Xu Y, et al. PCR past, present and future[J]. BioTechniques, 2020, 69(4): 317-325.
|
[27] |
Glökler J, Lim TS, Ida J, et al. Isothermal amplifications - a comprehensive review on current methods[J]. Crit Rev Biochem Mol Biol, 2021, 56(6): 543-586.
|
[28] |
Lau HY, Botella JR. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection[J]. Front Plant Sci, 2017, 8: 2016.
doi: 10.3389/fpls.2017.02016
pmid: 29375588
|
[29] |
Zyrina NV, Antipova VN. Nonspecific synthesis in the reactions of isothermal nucleic acid amplification[J]. Biochem Mosc, 2021, 86(7): 887-897.
|
[30] |
Hu YH, Wan ZZ, Mu YL, et al. A quite sensitive fluorescent loop-mediated isothermal amplification for rapid detection of respiratory syncytial virus[J]. J Infect Dev Ctries, 2019, 13(12): 1135-1141.
|
[31] |
Zasada AA, Zacharczuk K, Formińska K, et al. Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents[J]. Anal Biochem, 2018, 560: 60-66.
doi: S0003-2697(18)30708-5
pmid: 30217500
|
[32] |
Li HJ, Yang J, Wu GF, et al. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors[J]. Angew Chem Int Ed Engl, 2022, 61(32): e202203826.
|