| [1] |
Annan IB, Tingey WM, Schaefers GA, et al. Stylet penetration activities by Aphis craccivora (Homoptera: Aphididae) on plants and excised plant parts of resistant and susceptible cultivars of cowpea (Leguminosae) [J]. Ann Entomol Soc Am, 2000, 93(1): 133-140.
|
| [2] |
Lu ZZ, Feng LK, Gao GZ, et al. Differences in the high-temperature tolerance of Aphis craccivora (Hemiptera: Aphididae) on cotton and soybean: implications for ecological niche switching among hosts [J]. Appl Entomol Zool, 2017, 52(1): 9-18.
|
| [3] |
Pavithran S, Murugan M, Mannu J, et al. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses [J]. Insect Biochem Mol Biol, 2024, 165: 104060.
|
| [4] |
Fouad EA, Abou-Yousef HM, Abdallah IS, et al. Resistance monitoring and enzyme activity in three field populations of cowpea aphid (Aphis craccivora) from Egypt [J]. Crop Prot, 2016, 81: 163-167.
|
| [5] |
Yang YX, Duan AL, Zhang C, et al. Overexpression of ATP-binding cassette transporters ABCG10, ABCH3 and ABCH4 in Aphis craccivora (Koch) facilitates its tolerance to imidacloprid [J]. Pestic Biochem Physiol, 2022, 186: 105170.
|
| [6] |
Kandasamy R, London D, Stam L, et al. Afidopyropen: New and potent modulator of insect transient receptor potential channels [J]. Insect Biochem Mol Biol, 2017, 84: 32-39.
|
| [7] |
Gerwick BC, Sparks TC. Natural products for pest control: an analysis of their role, value and future [J]. Pest Manag Sci, 2014, 70(8): 1169-1185.
|
| [8] |
Koch RL, da Silva Queiroz O, Aita RC, et al. Efficacy of afidopyropen against soybean aphid (Hemiptera: Aphididae) and toxicity to natural enemies [J]. Pest Manag Sci, 2020, 76(1): 375-383.
|
| [9] |
Wang R, Gao BL, Che WN, et al. First report of field resistance to afidopyropen, the novel pyropene insecticide, on Bemisia tabaci Mediterranean (Q biotype) from China [J]. Agronomy, 2022, 12(3): 724.
|
| [10] |
Li R, Cheng SH, Liang PZ, et al. Status of the resistance of Aphis gossypii glover, 1877 (Hemiptera: Aphididae) to afidopyropen originating from microbial secondary metabolites in China [J]. Toxins, 2022, 14(11): 750.
|
| [11] |
Casida JE. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects [J]. Annu Rev Entomol, 2018, 63: 125-144.
|
| [12] |
Zhang LP, Lu H, Guo K, et al. Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi [J]. Sci China Life Sci, 2017, 60(8): 927-930.
|
| [13] |
Liu NN. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions [J]. Annu Rev Entomol, 2015, 60: 537-559.
|
| [14] |
Ketterman AJ, Saisawang C, Wongsantichon J. Insect glutathione transferases [J]. Drug Metab Rev, 2011, 43(2): 253-265.
|
| [15] |
Gao HL, Lin XM, Yang BJ, et al. The roles of GSTs in fipronil resistance in Nilaparvata lugens: Over-expression and expression induction [J]. Pestic Biochem Physiol, 2021, 177: 104880.
|
| [16] |
Zhang BZ, Jiang YT, Cui LL, et al. Overexpression of SmUGGT1 confers imidacloprid resistance to Sitobion miscanthi (takahashi) [J]. J Agric Food Chem, 2024, 72(32): 17824-17833.
|
| [17] |
Liu JP, Liu Y, Wang W, et al. Characterizing three heat shock protein 70 genes of Aphis gossypii and their expression in response to temperature and insecticide stress [J]. J Agric Food Chem, 2025, 73(5): 2842-2852.
|
| [18] |
Yang YX, Wang AY, Fu XC, et al. microRNA-mediated detoxification network conferring afidopyropen tolerance in Aphis craccivora [J]. Pestic Biochem Physiol, 2025, 213: 106485.
|
| [19] |
Silva AX, Jander G, Samaniego H, et al. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: a transcriptomic survey [J]. PLoS One, 2012, 7(6): e36366.
|
| [20] |
Field LM, Bass C, Davies TGE, et al. Aphid genomics and its contribution to understanding aphids as crop pests [M]//Aphids as crop pests. UK: CABI, 2017: 37-49.
|
| [21] |
Ding WJ, Guo LZ, Xue YN, et al. Life parameters and physiological reactions of cotton aphids Aphis gossypii (Hemiptera: Aphididae) to sublethal concentrations of afidopyropen [J]. Agronomy, 2024, 14(2): 258.
|
| [22] |
Zhang JQ, Ge PT, Li DQ, et al. Two homologous carboxylesterase genes from Locusta migratoria with different tissue expression patterns and roles in insecticide detoxification [J]. J Insect Physiol, 2015, 77: 1-8.
|
| [23] |
Gonis E, Fraichard S, Chertemps T, et al. Expression patterns of Drosophila melanogaster glutathione transferases [J]. Insects, 2022, 13(7): 612.
|
| [24] |
Zhu YC, Guo ZB, Chen MS, et al. Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae) [J]. J Invertebr Pathol, 2011, 106(2): 296-307.
|
| [25] |
Maiwald F, Haas J, Hertlein G, et al. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages [J]. Pestic Biochem Physiol, 2023, 192: 105410.
|
| [26] |
Xu ZB, Zou XP, Zhang N, et al. Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura [J]. Insect Sci, 2015, 22(4): 503-511.
|
| [27] |
Yang BJ, Lin XM, Yu N, et al. Contribution of glutathione S-transferases to imidacloprid resistance in Nilaparvata lugens [J]. J Agric Food Chem, 2020, 68(52): 15403-15408.
|
| [28] |
Li XX, Shi HY, Gao XW, et al. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.) [J]. Pest Manag Sci, 2018, 74(3): 695-704.
|
| [29] |
Du TH, Fu BL, Wei XG, et al. Knockdown of UGT352A5 decreases the thiamethoxam resistance in Bemisia tabaci (Hemiptera: Gennadius) [J]. Int J Biol Macromol, 2021, 186: 100-108.
|
| [30] |
Nair PMG, Choi J. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure [J]. Aquat Toxicol, 2011, 101(3-4): 550-560.
|
| [31] |
Yang YX, Wang AY, Zhang Y, et al. Activating pathway of three metabolic detoxification phases via down-regulated endogenous microRNAs, modulates triflumezopyrim tolerance in the small brown planthopper, Laodelphax striatellus (Fallén) [J]. Int J Biol Macromol, 2022, 222: 2439-2451.
|
| [32] |
Bass C, Carvalho RA, Oliphant L, et al. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens [J]. Insect Mol Biol, 2011, 20(6): 763-773.
|
| [33] |
Pym A, Umina PA, Reidy-Crofts J, et al. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae [J]. Insect Biochem Mol Biol, 2022, 143: 103743.
|
| [34] |
Balakrishnan B, Su S, Wang K, et al. Identification, expression, and regulation of an omega class glutathione S-transferase in Rhopalosiphum padi (L.) (Hemiptera: Aphididae) under insecticide stress [J]. Front Physiol, 2018, 9: 427.
|
| [35] |
Liu L, Tang HC, Huang BJ, et al. A novel Theta-class glutathione S-transferase gene in Rhopalosiphum padi (L.) (Hemiptera: Aphididae): Identification, recombinant protein expression and function analyses of RpGSTT1 [J]. J Asia Pac Entomol, 2022, 25(2): 101915.
|
| [36] |
Zhang YX, Yang BJ, Yu N, et al. Insecticide resistance associated overexpression of two sigma GST genes assists Nilaparvata lugens to remedy oxidative stress from feeding on resistant rice variety [J]. Pestic Biochem Physiol, 2022, 188: 105230.
|
| [37] |
Fu XC, Xue C, Wang X, et al. Two detoxification enzyme genes, CYP6DA2 and CarFE4, mediate the susceptibility to afidopyropen in Semiaphis heraclei d [J]. Front Physiol, 2024, 15: 1478869.
|
| [38] |
Pan YO, Tian FY, Wei X, et al. Thiamethoxam resistance in Aphis gossypii glover relies on multiple UDP-glucuronosyltransferases [J]. Front Physiol, 2018, 9: 322.
|
| [39] |
Du TH, Xue H, Zhou XM, et al. The UDP-glycosyltransferase UGT352A3 contributes to the detoxification of thiamethoxam and imidacloprid in resistant whitefly [J]. Pestic Biochem Physiol, 2025, 208: 106321.
|
| [40] |
Tao F, Si FL, Hong R, et al. Glutathione S-transferase (GST) genes and their function associated with pyrethroid resistance in the malaria vector Anopheles sinensis [J]. Pest Manag Sci, 2022, 78(10): 4127-4139.
|