生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 110-120.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0695

• 未来食品工程专题 • 上一篇    

利用大肠杆菌高效合成L-异亮氨酸的系统代谢工程研究

魏敏华(), 李晓童, 姜亚文, 周飘飘, 汪凯, 孙浩, 芦楠, 张成林()   

  1. 天津科技大学生物工程学院,天津 300457
  • 收稿日期:2025-06-30 出版日期:2025-11-26 发布日期:2025-12-09
  • 通讯作者: 张成林,男,博士,教授,研究方向 :代谢工程;E-mail: zcl@tust.edu.cn
  • 作者简介:魏敏华,女,博士研究生,研究方向 :代谢控制发酵;E-mail: 22914013@mail.tust.edu.cn
  • 基金资助:
    国家自然科学基金项目(32170049);天津市自然科学基金(23JCYBJC00860)

Systems Metabolic Engineering for Highly Efficient L-isoleucine Production in Escherichia coli

WEI Min-hua(), LI Xiao-tong, JIANG Ya-wen, ZHOU Piao-piao, WANG Kai, SUN Hao, LU Nan, ZHANG Cheng-lin()   

  1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457
  • Received:2025-06-30 Published:2025-11-26 Online:2025-12-09

摘要:

目的 L-异亮氨酸属于必需氨基酸,在医药、食品、农业等领域应用广泛。针对现有L-异亮氨酸生产菌株存在的合成效率偏低、发酵周期长、不稳定等不足,利用系统代谢工程构建L-异亮氨酸高效合成菌株。 方法 以前期构建的L-异亮氨酸合成菌株ISO-2为研究对象,通过提高草酰乙酸和L-天冬氨酸供应、解除L-异亮氨酸的反馈抑制作用、增强L-异亮氨酸合成代谢流、平衡辅酶水平、构建柠苹酸途径以及强化输出等策略提升L-异亮氨酸合成效率。 结果 过表达ppcpycAaspCaspA有效提升了草酰乙酸和L-天冬氨酸供应,菌株YL-4的L-异亮氨酸产量达到6.98 g/L。过表达解除反馈抑制的苏氨酸脱水酶编码基因ilvAYIilvD以及NADH依赖的二羟酸还原异构酶和亮氨酸脱氢酶编码基因ilvCEMbcd,菌株YL-8的L-异亮氨酸产量提升35.4%。过表达cimAleuBCD构建柠苹酸途径,菌株YL-12的L-异亮氨酸产量提高至11.03 g/L,其副产物L-缬氨酸积累量降低至0.10 g/L。敲除iclR激活乙醛酸循环并利用自调节启动子P fliA 动态调控α-脱氢酶编码基因sucAB转录,菌株YL-14的L-异亮氨酸产量提高至11.93 g/L。在此基础上,敲除L-异亮氨酸摄入蛋白编码基因brnQ、过表达其输出载体编码基因ygaZH,菌株YL-16经发酵44 h,L-异亮氨酸产量和转化率分别达到49.73 g/L和0.33 g/g葡萄糖。 结论 利用系统代谢工程选育出一株合成效率高、发酵周期短且稳定的L-异亮氨酸生产菌株。所用策略可为天冬氨酸族氨基酸及分支链氨基酸菌株的构建提供参考。

关键词: L-异亮氨酸, 大肠杆菌, 代谢工程, 代谢流, 动态调控

Abstract:

Objective L-isoleucine, an essential amino acid, is widely used in pharmaceutical, food, and agricultural industries. To address the limitations of the current industrial strains used for scale-up production of L-isoleucine, such as low synthesis efficiency, prolonged fermentation period, and instability, this study is aimed to construct a highly efficient L-isoleucine-producing strain through systems metabolic engineering. Method ISO-2, an L-isoleucine -producing strain developed previously, was used as the parental strain. Multiple strategies were implemented to enhance its L-isoleucine biosynthesis: Strengthening oxaloacetate and L-aspartate supply, alleviating feedback inhibition of L-isoleucine, enhancing metabolic flux for L-isoleucine synthesis, balancing cofactor levels, introducing citramalate pathway, and reinforcing L-isoleucine efflux. Result The overexpression of ppc, pycA, aspC, and aspA significantly improved oxaloacetate and L-aspartate supply, achieving L-isoleucine titer of 6.98 g/L in strain YL-4. The co-expression of feedback-resistant threonine dehydratase encoding gene ilvAYI and ilvD, together with NADH-dependent enzymes encoding genes (ilvCEM and bcd) increased L-isoleucine production by 35.4% in strain YL-8. Implementing the citramalate pathway by cimA and leuBCD elevated L-isoleucine production to 11.03 g/L, and reduced L-valine accumulation to 0.10 g/L in strain YL-12. Knocking out iclR to activate glyoxylate cycle and dynamically regulating sucAB (encoding α-ketoglutarate dehydrogenase) using the auto-regulatory promoter P fliA boosted L-isoleucine production to 11.93 g/L. Finally, by deleting brnQ (encoding L-isoleucine transporter) and overexpressing ygaZH (encoding L-isoleucine exporter), strain YL-16 produced 49.73 g/L L-isoleucine, with a yield of 0.33 g/g glucose. Conclusion An L-isoleucine hyperproducer with enhanced efficiency and shortened fermentation period was successfully developed via systems metabolic engineering. This combinatorial strategy provides a valuable reference for engineering strains for producing aspartate-family and branched-chain amino acids.

Key words: L-isoleucine, Escherichia coli, metabolic engineering, metabolic flux, dynamic regulation