[1]Fan DL, Wang LY, Chen YW. Wait microbial fuel cells the latest research progress[J]. Modern Chemical Industry, 2011, 31(6):14-18. [2]Lovley DR. Microbial fuel cells:novel microbial physiologies and engineering approaches[J]. Current Opinion in Biotechnology, 2006, 17(3):327-332. [3]Kim BH, Park HS. Electrochemical activity of an Fe(Ⅲ)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors[J]. Biotechnology Techniques. 1999, 13(7):475-8. [4]Roller SD, Bennetto HP, Delaney GM, et al. Electron-transfer coupling in microbial fuel cells:1. comparison of redox-mediator reduction rates and respiratory rates of bacteria[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 1984, 34(1):3-12. [5]Lovley DR, Stolz JF, Nord GL, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 1987, 330(6145):252-254. [6]Rivera I, Buitrón G, Bakonyi P, et al. Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent[J]. Journal of Applied Electrochemistry, 2015, 45(11):1223-1229. [7] Saba B, Christy AD, Yu ZT, et al. Simultaneous power generation and desalination of microbial desalination cells using Nannochloropsis salina(Marine Algae)versus potassium ferricyanide as catholytes[J]. Environmental Engineering Science, 2017. doi:10.10891ees.2016.0291. [8] Chen Z, Niu Y, Zhao S, et al. A novel biosensor for ρ-nitrophenol based on an aerobic anode microbial fuel cell[J]. Biosensors & Bioelectronics, 2016, 85:860-868. [9] Huang JS, Yang P, Li CM, et al. Effect of nitrite and nitrate concentrations on the performance of AFB-MFC enriched with high-strength synthetic wastewater[J]. Biotechnology Research International, 2015:798397. [10] Wang J, Bi F, Ngo HH, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor(MFC-MBR)for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200:420-425. [11] Wang YP, Zhang HL, Li WW, et al. Improving electricity generation and substrate removal of a MFC-SBR system through optimization of COD loading distribution[J]. Biochemical Engineering Journal, 2014, 85(15):15-20. [12] Doherty L, Zhao YQ, Zhao XH, et al. A review of a recently emerged technology:constructed wetland-microbial fuel cells[J]. Water Research, 2015, 85:38-45. [13] 中国科学院水生生物研究所. 一种复合垂直流人工湿地耦合微生物电解池强化脱氮的方法及装置:中国,CN105217797A[P], 2016-01-06. [14]中国科学院水生生物研究所. 一种以钢渣为阳极的同步产电和污水净化的装置:中国,CN105502673A[P], 2016-04-20. [15] 冯玉杰, 李贺, 王鑫, 等. 电化学产电菌的分离及性能评价[J]. 环境科学, 2010, 31(11):2804-2810. [16]吴松, 肖勇, 郑志勇, 等. 微氧环境中电化学活性微生物的分离与鉴定[J]. 环境科学, 2014(10):3933-3939. [17]Quan XC, Quan YP, Tao K, et al. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs[J]. Bioresource Technology, 2013, 128(128C):259-265. [18]李颖, 孙永明, 孔晓英, 等. 微生物燃料电池中产电微生物的研究进展[J]. 微生物学通报, 2009, 36(9):1404-1409. [19] Koch C, Harnisch F. Is there a Specific ecological niche for electroactive microorganisms?[J]. Chemelectrochem, 2016, 3(9):1282-1295. [20]Kim HJ, Park HS, Hyun MS, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens[J]. Enzyme & Microbial Technology, 2002, 30(2):145-152. [21]Ringeisen BR, Henderson E, Wu PK, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10[J]. Environmental Science & Technology, 2006, 40(8):2629-2634. [22]Sekar R, Shin HD, Dichristina TJ. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis[J]. Appl Environ Microbiol, 2016, 82(13):3996-4005. [23]Marsili E, Baron DB, Shikhare ID, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proc Natl Academy of Sciences, 2008, 105(10):3968-3973. [24]Biffinger JC, Fitzgerald LA, Ray R, et al. The utility of Shewanella japonica, for microbial fuel cells[J]. Bioresource Technology, 2011, 102(1):290-297. [25]Xu M, Guo J, Cen Y, et al. Shewanella decolorationis sp. nov. a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant[J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55(1):363-368. [26]Coppi MV, Leang C, Sandler SJ, et al. Development of a Genetic System for Geobacter sulfurreducens[J]. Applied & Environ Microbiol, 2001, 67(7):3180-3187. [27]Aklujkar M, Krushkal J, DiBartolo G, et al. The genome sequence of Geobacter metallireducens:features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens[J]. BMC Microbiology, 2009, 9:109. [28] Yi H, Nevin KP, Kim BC, et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells[J]. Biosensors & Bioelectronics, 2009, 24(12):3498-3503. [29] Call DF, Logan BE. A method for high throughput bioelectroche-mical research based on small scale microbial electrolysis cells[J]. Biosensors & Bioelectronics, 2011, 26(11):4526-4531. [30]Rabaey K, Boon N, Siciliano SD, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied & Environ Microbiol, 2004, 70(9):5373-5382. [31]游婷. 铜绿假单胞菌存活时间延长可提高生物燃料电池的产电量[J]. 生物工程学报, 2017, 33(4):601-608. [32]Zuo Y, Xing D, Regan JM, et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube micro-bial fuel cell[J]. Applied & Environ Microbiol, 2008, 74(10):3130-3137. [33] Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232. [34]Xing D, Zuo Y, Cheng S, et al. Electricity generation by Rhodopse-udomonas palustris DX-1[J]. Environmental Science & Techno-logy, 2008, 42(11):4146-4151. [35]Pham CA, Jung SJ, Phung NT, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated form a microbial fuel cell[J]. FEMS Microbiology Letters, 2003, 223(1):129-134. [36]张锦涛, 周顺桂. 产气肠杆菌燃料电池产电机制研究[J]. 环境科学, 2009, 30(4):1215- 1220. [37]李明, 梁湘, 骆健美, 等. 一株产电菌嗜根考克氏菌(Kocuria rhizophila)的分离及其产电性能优化[J]. 环境科学学报, 2015, 35(10):3078-3087. [38] Lee YY, Kim TG, Cho KS. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21[J]. Bioprocess & Biosystems Engineering, 2016, 39(6):1005-1014. [39]Liu L, Lee DJ, Wang A, et al. Isolation of Fe(III)-reducing bacterium, Citrobacter sp. LAR-1, for startup of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2015, 41(7):4498-4503. [40]Luo J, Jia Y, He H, et al. A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis, and power performance in MFCs[J]. Bioresource Technology, 2013, 139C(7):141-148. [41]Bond DR and Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans[J]. App-lied & Environ Microbiol, 2005, 71(4):2186-2189. [42] Holmes DE, Nicoll JS, Bond DR, et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov. , sp. nov. , in electricity production by a marine sediment fuel cell[J]. Applied & Environ Microbiol, 2004, 70(10):6023-6030. [43]Pham CA, Jung SJ, Phung NT, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS Microbiology Letters, 2003, 223(1):129-134. [44]Fedorovich V, Knighton MC, Pagaling E, et al. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell[J]. Applied & Environ Microbiol, 2009, 75(23):7326-7334. [45]Xing D, Cheng S, Logan BE, et al. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction[J]. Applied Microbiology & Biotechnology, 2010, 85(5):1575-1587. [46]Mao L, Verwoerd WS. Selection of Organisms for systems biology study of microbial electricity generation:a review[J]. Internat-ional Journal of Energy & Environmental Engineering, 2013, 4(1):1-18. [47]Hubenova Y, Mitov M. Potential application of Candida melibiosica in biofuel cells[J]. Bioelectrochemistry, 2010, 78(1):57-61. [48]Schaetzle O, Barrière F, Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells:electron transfer from microorganisms to electrodes for green electricity[J]. Energy & Environmental Science, 2008, 1(6):607-620. [49]Prasad D, Arun S, Murugesan M, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors & Bioelectronics, 2007, 22(11):2604-2610. [50]Lee YY, Kim TG, Cho KS. Isolation and characterization of a novel electricity-producing yeast, Candida, sp. IR11[J]. Bioresource Technology, 2015, 192:556-563. [51]Raghavulu SV, Goud RK, Sarma PN, et al. Saccharomyces cerevisiae, as anodic biocatalyst for power generation in biofuel cell:Influence of redox condition and substrate load[J]. Bioresource Technology, 2011, 102(3):2751-2757. [52]Haslett ND, Rawson FJ, Barri?re F, et al. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst[J]. Biosensors and Bioelectronics, 2011, 26(9):3742-3747. [53]Williams J, Trautwein-Schult A, Jankowska D, et al. Identification of uric acid as the redox molecule secreted by the yeast Arxula adeninivorans[J]. Applied Microbiology & Biotechnology, 2014, 98(5):2223-2229. [54]Liu W, Cheng S, Guo J. Anode modification with formic acid:A simple and effective method to improve the power generation of microbial fuel cells[J]. Applied Surface Science, 2014, 320(320):281-286. [55] Vamshi KK, Venkata MS. Selective enrichment of electrogenic bacteria for fuel cell application:Enumerating microbial dynamics using MiSeq platform[J]. Bioresource Technology, 2016, 213:146-154. [56]Alain K, Querellou J. Cultivating the uncultured:limits, advances and future challenges[J]. Extremophiles Life Under Extreme Conditions, 2009, 13(4):583-594. [57]范念斯, 齐嵘, 杨敏. 未培养微生物的培养方法进展[J]. 应用与环境生物学报, 2016, 22(3):524-530. [58] 李晶, 袁林江, 刘正川, 等. 微生物发酵对MFC产电的影响[J]. 环境工程学报, 2016, 10(8):4049-4054. [59]陈姗姗, 张翠萍, 刘广立, 等. 纯菌株与混合菌株在MFC中降解喹啉及产电性能的研究[J]. 环境科学, 2010, 31(9):2148-2154. [60]赵磊, 宋加妹, 于俊伟, 等. 混合菌群与单菌株微生物燃料电池产电性能初步研究[J]. 化学与生物工程, 2013, 30(1):64-67. [61]Logan BE. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5):375-381. [62]侯俊先, 刘中良, 李艳霞, 等. 电活性生物膜生长过程中电荷与传质阻抗的变化规律[J]. 科学通报, 2016(33):3616-3622. [63]Peng L, Zhang XT, Yin J, et al. Geobacter sulfurreducens, adapts to low electrode potential for extracellular electron transfer[J]. Electrochimica Acta, 2016, 191:743-749. [64]Reguera G, Mccarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101. [65]Kumar R, Singh L, Zularisam AW. Exoelectrogens:Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications[J]. Renewable & Sustainable Energy Reviews, 2016, 56:1322-1336. [66]Pirbadian S, Barchinger SE, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proc Natl Acad Sci USA, 2014, 111(35):12883-12888. [67]马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015(12):1833-1840. [68]蔡茜茜, 袁勇, 胡佩, 等. 腐殖质电化学特性及其介导的胞外电子传递研究进展[J]. 应用与环境生物学报, 2015, 21(6):996-1002. [69]李丽, 檀文炳, 王国安, 等. 腐殖质电子传递机制及其环境效应研究进展[J]. 环境化学, 2016, 35(2):254-266. [70]Hubenova Y, Bakalska R, Hubenova E, et al. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell[J]. Bioelectrochemistry, 2016, 112:158-165. [71] Xia X, Cao XX, Liang P, et al. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells[J]. Applied Microbio-logy & Biotechnology, 2010, 87(1):383-390. [72]Okamoto A, Hashimoto K, Nealson KH, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones[J]. Proc Natl Acad Sci USA, 2013, 110(19):7856-7861. [73]Sydow A, Krieg T, Mayer F, et al. Electroactive bacteria--molecular mechanisms and genetic tools[J]. Applied Microbiology and Biotechnology, 2014, 98(20):8481-8495. [74]Rabaey K, Rozendal RA. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10):706-716. [75]Sydow A, Krieg T, Mayer F, et al. Electroactive bacteria-molecular mechanisms and genetic tools[J]. Applied Microbiology and Biotechnology, 2014, 98(20):8481-8495. [76]Schr?der U, Niessen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie International Edition, 2003, 115(25):2986-2989. [77]吕永坤, 堵国成, 陈坚, 等. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4):134-148. [78]李锋, 宋浩. 微生物胞外电子传递效率的合成生物学强化[J]. 生物工程学报, 2017, 33(3):516-534. [79]Yong YC, Yu YY, Yang Y, et al. Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells[J]. Electrochemistry Communications, 2012, 19:13-16. [80]Simone S, Salome N, Nick W, et al. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440[J]. Frontiers in Microbiology, 2015, 6:284. [81]Lin T, Bai X, Hu Y, et al. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell[J]. Aiche Journal, 2016, 63(6):1830-1838. [82]Liu T, Yu Y, Deng X, et al. Enhanced Shewanella biofilm promotes bioelectricity generation[J]. Biotechnology & Bioengineering, 2015, 112(10):2051. [83]Huang L, Cheng S, Chen G. Bioelectrochemical systems for efficient recalcitrant wastes treatment[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4):481-491. [84]许丹, 肖恩荣, 徐栋, 等. 微生物燃料电池与人工湿地耦合系统研究进展[J]. 化工学报, 2015(7):2370-2376. [85]许鹏, 许丹, 张义, 等. 植物型微生物燃料电池研究进展[J]. 工业安全与环保, 2014(9):33-35. |