[1] Borges F, Calarco JP, Martienssen RA.Reprogramming the epigenome in Arabidopsis pollen[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 77:1-5. [2] Bonasio R, Tu S, Reinberg D.Molecular signals of epigenetic states[J]. Science, 2010, 330(6004):612-616. [3] Chan WL, Henderson IR, Jacobsen SE.Gardening the genome DNA methylation in Arabidopsis thaliana[J]. Not Rev Genet, 2005, 6(5):351-360. [4] Huh JH, Bauer MJ, Hsieh TF, et al.Cellular programming of plant gene imprinting[J]. Cell, 2008, 132(5):735-744. [5] Law JA, Jacobsen SE.Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010, 11(3):204-220. [6] Wu SC, Zhang Y.Active DNA demethylation:many roads lead to Rome[J]. Nature Reviews Molecular Cell Biology, 2010, 11(10):750. [7] Hsieh TF, Ibarra CA, Silva P, et al.Genome-wide demethylation of Arabidopsis endosperm[J]. Science, 2009, 324(5933):1451-1454. [8] Le TN, Schumann U, Smith NA, et al.DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis[J]. Genome Biology, 2014, 15(9):458. [9] Gong Z, Moralesruiz T, Ariza RR, et al.ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6):803-814. [10] Lang Z, Wang Y, Tang K, et al.Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(22):E4511-E4519. [11] Ishitani M, Xiong L, Stevenson B, et al.Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis:interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways[J]. Plant Cell, 1997, 9(11):1935-1949. [12] Agius F, Kapoor A, Zhu JK.Role of the “Arabidopsis” DNA glycosylase/lyase ROS1 in active DNA demethylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(31):11796-11801. [13] Jang H, Shin H, Eichman BF, et al.Excision of 5-hydroxymethylc-ytosine by DEMETER family DNA glycosylases[J]. Biochemical & Biophysical Research Communications, 2014, 446(4):1067-1072. [14] Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR.Demethylation initiated by ROS1 glycosylase involves random sliding along DNA[J]. Nucleic Acids Research, 2012, 40(22):11554-11562. [15] Penterman J, Zilberman D, Huh JH, et al.DNA demethylation in the Arabidopsis genome[J]. Proceedings of the National Academy of Sciences of the USA, 2007, 104(16):6752-6757. [16] Agius F, Kapoor A, Zhu JK.Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation[J]. Proceedings of the National Academy of Sciences of the USA, 2006, 103(31):11796-11801. [17] Lee J, Jang H, Shin H, et al.AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis[J]. Nucleic Acids Research, 2014, 42(18):11408-11418. [18] Li Y, Córdoba-Cañero D, Qian W, et al.An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis[J]. PLoS Genetics, 2015, 11(1):e1004905. [19] María Isabel Martínez-Macías, Qian W, Miki D, et al. A DNA 3' phosphatase functions in active DNA demethylation in Arabidopsis[J]. Molecular Cell, 2012, 45(3):357-370. [20] Beutner EH.Immunofluorescent staining:the fluorescent antibody method[J]. Bacteriol Rev, 1961, 25(25):49-76. [21] Martínezmacías MI, Córdobacañero D, Ariza RR, et al.The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation(5-meC)excision, gap tailoring, and DNA ligation[J]. Journal of Biological Chemistry, 2013, 288(8):5496-5505. [22] Andreuzza S, Li J, Guitton AE, et al.DNA LIGASE I exerts a maternal effect on seed development in Arabidopsis thaliana[J]. Development, 2010, 137(1):73-81. [23] Li Y, Duan CG, Zhu X, et al.A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis[J]. Cell Research, 2015, 25(6):757-760. [24] Qian W, Miki D, Zhang H, et al.A histone acetyltransferase regulates active DNA demethylation in Arabidopsis[J]. Science Foundation in China, 2012, 336(1):31. [25] Duan CG, Wang X, Xie S, et al.A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation[J]. Cell Research, 2017, 27(2):226-240. [26] Lang Z, Lei M, Wang X, et al.The Methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing[J]. Molecular Cell, 2015, 57(6):971-983. [27] Li Q, Wang X, Sun H, et al.Regulation of active DNA demethylation by a methyl-CpG-binding domain protein in Arabidopsis thaliana[J]. PLoS Genet, 2015, 11(5):e1005210. [28] Qian W, Miki D, Lei M, et al.Regulation of active DNA demethylation by an α-Crystallin domain protein in Arabidopsis[J]. Molecular Cell, 2014, 55(3):361-371. [29] Zhao Y, Xie S, Li X, et al.REPRESSOR OF SILENCING5 encodes a member of the small heat shock protein family and is required for DNA demethylation in Arabidopsis[J]. The Plant Cell, 2014, 26(6):2660-2675. [30] Nie W, Lei M, Zhang M, et al.Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 2019, 116(33):16641-16650. [31] Williams BP, Pignatta D, Henikoff S, et al.Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat[J]. PLoS Genetics, 2015, 11(3):e1005142. [32] Lei M, Zhang H, Julian R, et al.Regulatory link between DNA methylation and active demethylation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 2015, 112(11):3553-3557. [33] Xiao XL, Zhang JQ, Li T, et al.A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS_1 in Arabidopsis[J]. Journal of Integrative Plant Biology, 2019, 61(2):24-33. [34] Zhao QQ, Lin RN, Li L, et al.A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes[J]. Journal of Integrative Plant Biology, 2019, 61(2):120-139. [35] Harris CJ, Scheibe M, Wongpalee SP, et al.A DNA methylation reader complex that enhances gene transcription[J]. Science, 2018, 362(6419):1182-1186. [36] Li S, Liu L, Li S, et al.SUVH1, a Su(var)3-9 family member,promotes the expression of genes targeted by DNA methylation[J].Nucleic Acids Research, 2016(2):608-620. [37] Duan CG, Wang X, Tang K, et al.MET18 connects the cytosolic iron-sulfur cluster assembly pathway to active DNA demethylation in Arabidopsis[J]. PLoS Genetics, 2015, 11(10):e1005559. [38] Wang X, Li Q, Yuan W, et al.The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation[J]. Scientific Reports, 2016, 6:26443. [39] Li Y, Kumar S, Qian W.Active DNA demethylation:mechanism and role in plant development[J]. Plant Cell Rep, 2018, 37(1):77-85. [40] Schalk C, Molinier J.Global genome repair factors control DNA methylation patterns in Arabidopsis[J]. Plant Signaling & Behavior, 2016, 11(12). [41] Catherine S, Stéphanie D, Kramdi A, et al.DNA DAMAGE BINDING PROTEIN2 shapes the DNA methylation landscape[J]. The Plant Cell, 2016, 28(9):2043-2059. [42] Córdoba-Cañero D, Cognat V, Ariza RR, et al.Dual control of ROS1-mediated active DNA demethylation by the DNA DAMAGE BINDING protein 2(DDB2)[J]. The Plant Journal, 2017, 92(6):1170-1181. [43] Jang H, Shin H, Eichman BF, et al.Excision of 5-hydroxymethylc-ytosine by DEMETER family DNA glycosylases[J]. Biochemical & Biophysical Research Communications, 2014, 446(4):1067-1072. [44] Kinoshita T, Kakutani T.One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J]. Science, 2004, 303(5657):521-523. [45] Gehring M, Huh JH, Hsieh TF, et al.DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation[J]. Cell, 2006, 124(3):495-506. [46] He S, Sun Y, Yang Q, et al.A novel imprinted gene NUWA controls mitochondrial function in early seed development in Arabidopsis[J]. PLoS Genet, 2017, 13:e1006553. [47] Ono A, Yamaguchi K, Fukada-Tanaka S, et al.A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny[J]. The Plant Journal, 2012, 71(4):564-574. [48] Leónie B, Jemma J, Hanhart CJ, et al.Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 2006, 103(45):17042-17047. [49] Hsieh TF, Shin J, Uzawa R, et al.Regulation of imprinted gene expression in Arabidopsis endosperm[J]. Proceedings of the National Academy of Sciences of the USA, 2011, 108(5):1755-1762. [50] Zhu HF, Xie WX, Zhu JK.DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the USA, 2018, 115(42):E9962-E9970. [51] Kim JS, Lim JY, Shin H, et al.ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression[J]. Plant Physiology, 2019, 179(4):1810-1821. [52] Wu X, Liu J, Li D, et al.Rice caryopsis development. II:Dynamic changes in the endosperm[J]. J Integr Plant Biol, 2016, 58(9):786-798. [53] Becraft PW, Yi G.Regulation of aleurone development in cereal grains[J]. Journal of Experimental Botany, 2011, 62(5):1669-1675. [54] Nations FAOO, Latham MC.Human nutrition in the developing world[J]. Population & Development Review, 1997, 24(1):177. [55] Liu J, Wu X, Yao X, et al.Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains[J]. Proceedings of the National Academy of Sciences of the USA, 2018, 115(44):11327-11332. [56] Lang Z, Gong Z.A role of OsROS1 in aleurone development and nutrient improvement in rice[J]. Proceedings of the National Academy of Sciences of the USA, 2018, 115:11659-11660. [57] Hara K, Yokoo T, Kajita R, et al.Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant and Cell Physiology, 2009, 50(6):1019-1031. [58] Hunt L, Gray JE.The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development[J]. Current Biology, 2009, 19(10):864-869. [59] Yamamuro C, Miki D, Zheng Z, et al.Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation[J]. Nature Communications, 2014, 5:4062. [60] Dowen RH, Pelizzola M, Schmitz RJ, et al.Widespread dynamic DNA methylation in response to biotic stress[J]. Proceedings of the National Academy of Sciences of the USA, 2012, 109(32):E2183-E2191. [61] Yu A, Lepere G, Jay F, et al.Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proceedings of the National Academy of Sciences of the USA, 2013, 110(6):2389-2394. [62] Ulrike S, Joanne L, Kemal K, et al.DNA-demethylase regulated genes show methylation-independent spatiotemporal expression patterns[J]. Frontiers in Plant Science, 2017, 8:1449. [63] Gupta B, Huang B.Mechanism of salinity tolerance in plants:physiological, biochemical, and molecular characterization[J]. International Journal of Genomics, 2014, 2014(1):701596. [64] Pallavi S, Bhushan JA, Shanker DR, et al. Reactive oxygen species, oxidative damage,antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012:doi:10.1155/2012/217037. [65] Singh DP, Prabha R, Meena KK, et al.Induced accumulation of polyphenolics and flavonoids in cyanobacteria under salt stress protects organisms through enhanced antioxidant activity[J]. American Journal of Plant Sciences, 2014, 5(5):726. [66] Bharti P, Mahajan M, Vishwakarma AK, et al.AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco[J]. Journal of Experimental Botany, 2015, 66(19):5959-5969. [67] Jang H, Shin H, Huh JH.Excision of 5-Hydroxymethylcytosine By DEMETER DNA Glycosylase from Arabidopsis[C]// International Plant and Animal Genome Conference, San Diego, 2014. [68] Ariel F, Jegu T, Latrasse D, et al.Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop[J]. Molecular Cell, 2014, 55(3):383-396. [69] Hua K, Zhang J, Botella JR, et al.Perspectives on the application of genome editing technologies in crop breeding[J]. Mol Plant, 2019, 12:1047-1059. |