生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 59-72.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0342

• 综述与专论 • 上一篇    下一篇

不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展

刘佳欣1,2,3(), 张会龙1,2,3, 邹荣松1,2,3, 杨秀艳1,2,3, 朱建峰1,2,3(), 张华新1,2,3()   

  1. 1.中国林业科学研究院生态保护与修复研究所 国家林业和草原局盐碱地研究中心,北京 100091
    2.中国林业科学研究院天津林业科学研究所,天津 300457
    3.中国林业科学研究院黄河三角洲综合试验中心,东营 257500
  • 收稿日期:2022-03-22 出版日期:2023-01-26 发布日期:2023-02-02
  • 作者简介:刘佳欣,硕士研究生,研究方向:耐盐碱树木分子生物学;E-mail: liujiaxin19980707@163.com
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2017ZA001-9);中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2019MB008);国家自然科学基金项目(31870663);黄河三角洲学者专项经费资助项目

Research Progress in Na+ Antiport and Physiological Growth Mechanisms of Differernt Halophytes Adapted to Salt Stress

LIU Jia-xin1,2,3(), ZHANG Hui-long1,2,3, ZOU Rong-song1,2,3, YANG Xiu-yan1,2,3, ZHU Jian-feng1,2,3(), ZHANG Hua-xin1,2,3()   

  1. 1. Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091
    2. Tianjin Institute of Forestry Science, Chinese Academy of Forestry, Tianjin 300457
    3. Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257500
  • Received:2022-03-22 Published:2023-01-26 Online:2023-02-02

摘要:

盐生植物是指能在离子浓度至少200 mmol/L以上的生境中生长并完成生活史的植物。盐生植物可分为稀盐盐生植物、泌盐盐生植物、拒盐盐生植物三类。本文从生长形态、生理和分子3个方面总结三类盐生植物响应盐胁迫的不同策略及研究进展,发现盐生植物在分子水平上主要通过Na+转运蛋白和为其提供能量的两类基因应对体内过高Na+,这可能是引起盐生植物生理和生长形态异于非盐生植物的重要因素。其中稀盐盐生植物主要通过液泡离子区隔化应对盐胁迫,并表现出肉质化生长形态;泌盐盐生植物通过将体内盐分排出体外应对盐胁迫,并进化出特有的生理结构——盐腺或盐囊泡;拒盐盐生植物通过将盐离子积累在皮层细胞液泡和根部木质部薄壁细胞中减少向上运输Na+,同时根部多栓质化减少Na+吸收。本综述旨在为今后研究盐生植物及其耐盐机制提供相关依据,为植物耐盐分子育种奠定基础。

关键词: 盐生植物, Na+逆向转运, 耐盐生理机制, 耐盐生长机制

Abstract:

Halophytes refer to plants that can grow and complete their life cycle in habitats with an ion concentration of at least 200 mmol/L. Halophytes can be classified into three types:euhalophytes, recretohalophytes and pseudohalophytes. This review summarizes the different strategies and research progress of the three types of halophytes in response to salt stress from the three aspects of growth morphology, physiology and molecule. It is found that halophytes mainly use Na+ transporters genes and energy-providing genes to respond to excessive Na+ at the molecular level, which may be an important factor that causes halophytes to be different from non-halophytes in physiology and growth morphology. Euhalophytes respond to salt stress mainly through vacuolar ion compartmentalization and have succulent growth morphology. Recretohalophytes respond to salt through by expelling salt from their bodies and evolve unique physiological structures-salt glands or salt vesicles. Pseudohalophytes reduce the upward transport of Na+ by accumulating salt ions in the vacuoles of cortical cells and parenchyma cells of root xylem; meanwhile, root is having suberization to reduce the absorption of Na+. The purpose of the review is to provide relevant basis for the study of halophytes and their salt tolerance mechanism and lay a foundation for plant salt tolerance molecular breeding in the future.

Key words: halophytes, Na+ antiport, physiological mechanism of salt tolerance, growth mechanism of salt tolerance