生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 141-148.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1386
崔学强(), 黄昌艳, 邓杰玲, 李先民, 李秀玲, 张自斌()
收稿日期:
2022-11-09
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
张自斌,男,博士,副研究员,研究方向:兰科植物育种;E-mail: candou154@126.com作者简介:
崔学强,男,硕士,助理研究员,研究方向:兰科植物分子育种;E-mail: yncuixueqiang@126.com
基金资助:
CUI Xue-qiang(), HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin()
Received:
2022-11-09
Published:
2023-06-26
Online:
2023-07-07
摘要:
利用SNP标记技术对收集的石斛兰种质资源进行亲缘关系分析,为新品种选育亲本选择提供理论依据。以60份石斛兰种质资源为对象,用特异性位点扩增片段测序技术(SLAF-seq)对种质进行SNP标记开发及亲缘关系分析。通过对各样品的测序数据进行统计,共获得157.34 Mb Clean Reads数据,各样本Reads数据在576 195-5 359 710 之间。样本平均测序质量值Q30为93.85%,平均GC含量为40.16%。通过测序数据分析,共获得1 337 217个SLAF标签,标签的平均测序深度为9.63×,其中具多态性的SLAF标签有1 049 638个。共开发得到11 248 186个群体SNP标记,每个样品的SNP 标记数目介于694 015-6 367 379之间,SNP标记完整度为2.71%-24.89%,杂合率为1.13%-5.74%。对群体SNP 过滤,共获得31 499个高度一致性的有效SNP 标记。利用筛选获得的SNP标记构建系统发育树,60份石斛兰种质资源被分为3个亚群,这3个亚群分别包含材料为 Q1:3份,Q2:21份,Q3: 36份。种质聚类结果与形态学分类结果基本一致。利用SLAF-seq技术能高效、精确地开发出适用于石斛兰种质遗传分析的SNP标记,开发的SNP标记可为石斛兰育种、遗传图谱构建、品种鉴定以及农艺性状的关联分析等研究提供分子基础。
崔学强, 黄昌艳, 邓杰玲, 李先民, 李秀玲, 张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析[J]. 生物技术通报, 2023, 39(6): 141-148.
CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology[J]. Biotechnology Bulletin, 2023, 39(6): 141-148.
种质编号 Germplasm No. | 总读数 Total reads | GC含量 GC content/% | Q30含量 Q30 content/% | 种质编号 Germplasm No. | 总读数 Total reads | GC含量 GC content/% | Q30含量 Q30 content/% | |
---|---|---|---|---|---|---|---|---|
1 | 2 206 424 | 40.80 | 94.43 | 32 | 5 359 710 | 39.13 | 92.60 | |
2 | 3 392 758 | 39.52 | 94.06 | 33 | 1 927 034 | 39.04 | 91.41 | |
3 | 1 685 725 | 40.68 | 94.30 | 34 | 1 001 860 | 40.88 | 89.71 | |
4 | 2 397 802 | 41.36 | 93.61 | 35 | 1 738 186 | 38.96 | 91.29 | |
5 | 2 407 877 | 40.88 | 94.25 | 36 | 1 570 013 | 38.62 | 90.59 | |
6 | 3 816 221 | 37.99 | 93.65 | 37 | 2 817 541 | 42.10 | 94.61 | |
7 | 1 236 847 | 45.65 | 92.95 | 38 | 2 262 024 | 41.10 | 94.49 | |
8 | 2 603 097 | 40.01 | 94.46 | 39 | 1 506 192 | 40.21 | 94.35 | |
9 | 2 266 706 | 40.64 | 94.09 | 40 | 1 658 896 | 39.49 | 94.57 | |
10 | 2 741 663 | 39.42 | 93.77 | 41 | 2 398 814 | 41.12 | 94.63 | |
11 | 2 888 849 | 39.57 | 94.72 | 42 | 2 010 374 | 39.09 | 94.46 | |
12 | 5 033 204 | 39.52 | 94.34 | 43 | 2 253 253 | 38.95 | 94.61 | |
13 | 1 177 834 | 39.60 | 93.56 | 44 | 2 443 737 | 39.60 | 94.03 | |
14 | 1 558 521 | 39.04 | 93.06 | 45 | 3 295 369 | 39.07 | 94.86 | |
15 | 3 350 246 | 42.91 | 94.67 | 46 | 1 067 643 | 38.75 | 94.67 | |
16 | 2 508 628 | 39.29 | 93.40 | 47 | 2 170 007 | 39.61 | 94.40 | |
17 | 3 008 190 | 39.45 | 93.23 | 48 | 1 954 914 | 39.23 | 94.37 | |
18 | 2 892 775 | 42.48 | 94.54 | 49 | 2 394 534 | 39.06 | 94.48 | |
19 | 3 799 474 | 41.30 | 94.54 | 50 | 2 899 967 | 39.27 | 94.52 | |
20 | 3 265 332 | 41.98 | 94.56 | 51 | 2 199 124 | 46.38 | 94.72 | |
21 | 2 223 263 | 38.82 | 93.44 | 52 | 3 270 085 | 40.08 | 94.66 | |
22 | 2 536 748 | 40.32 | 94.25 | 53 | 1 303 118 | 39.41 | 94.51 | |
23 | 3 663 842 | 40.96 | 94.71 | 54 | 3 465 111 | 38.97 | 94.13 | |
24 | 576 195 | 42.98 | 93.34 | 55 | 2 955 467 | 39.29 | 94.76 | |
25 | 5 218 665 | 39.01 | 93.00 | 56 | 4 757 901 | 39.73 | 94.79 | |
26 | 2 318 866 | 39.08 | 93.03 | 57 | 4 802 384 | 40.06 | 94.62 | |
27 | 2 752 538 | 41.06 | 94.50 | 58 | 2 339 558 | 40.16 | 94.63 | |
28 | 1 709 658 | 38.85 | 90.70 | 59 | 2 787 875 | 38.80 | 94.67 | |
29 | 3 965 547 | 38.44 | 94.48 | 60 | 1 857 241 | 42.29 | 93.80 | |
30 | 1 831 691 | 38.73 | 91.14 | SD | 7 293 431 | 42.86 | 94.33 | |
31 | 3 836 959 | 40.67 | 94.49 |
表1 各样品SLAF-seq测序数据统计
Table 1 Data statistics of genomic sequences generated by SLAF-seq
种质编号 Germplasm No. | 总读数 Total reads | GC含量 GC content/% | Q30含量 Q30 content/% | 种质编号 Germplasm No. | 总读数 Total reads | GC含量 GC content/% | Q30含量 Q30 content/% | |
---|---|---|---|---|---|---|---|---|
1 | 2 206 424 | 40.80 | 94.43 | 32 | 5 359 710 | 39.13 | 92.60 | |
2 | 3 392 758 | 39.52 | 94.06 | 33 | 1 927 034 | 39.04 | 91.41 | |
3 | 1 685 725 | 40.68 | 94.30 | 34 | 1 001 860 | 40.88 | 89.71 | |
4 | 2 397 802 | 41.36 | 93.61 | 35 | 1 738 186 | 38.96 | 91.29 | |
5 | 2 407 877 | 40.88 | 94.25 | 36 | 1 570 013 | 38.62 | 90.59 | |
6 | 3 816 221 | 37.99 | 93.65 | 37 | 2 817 541 | 42.10 | 94.61 | |
7 | 1 236 847 | 45.65 | 92.95 | 38 | 2 262 024 | 41.10 | 94.49 | |
8 | 2 603 097 | 40.01 | 94.46 | 39 | 1 506 192 | 40.21 | 94.35 | |
9 | 2 266 706 | 40.64 | 94.09 | 40 | 1 658 896 | 39.49 | 94.57 | |
10 | 2 741 663 | 39.42 | 93.77 | 41 | 2 398 814 | 41.12 | 94.63 | |
11 | 2 888 849 | 39.57 | 94.72 | 42 | 2 010 374 | 39.09 | 94.46 | |
12 | 5 033 204 | 39.52 | 94.34 | 43 | 2 253 253 | 38.95 | 94.61 | |
13 | 1 177 834 | 39.60 | 93.56 | 44 | 2 443 737 | 39.60 | 94.03 | |
14 | 1 558 521 | 39.04 | 93.06 | 45 | 3 295 369 | 39.07 | 94.86 | |
15 | 3 350 246 | 42.91 | 94.67 | 46 | 1 067 643 | 38.75 | 94.67 | |
16 | 2 508 628 | 39.29 | 93.40 | 47 | 2 170 007 | 39.61 | 94.40 | |
17 | 3 008 190 | 39.45 | 93.23 | 48 | 1 954 914 | 39.23 | 94.37 | |
18 | 2 892 775 | 42.48 | 94.54 | 49 | 2 394 534 | 39.06 | 94.48 | |
19 | 3 799 474 | 41.30 | 94.54 | 50 | 2 899 967 | 39.27 | 94.52 | |
20 | 3 265 332 | 41.98 | 94.56 | 51 | 2 199 124 | 46.38 | 94.72 | |
21 | 2 223 263 | 38.82 | 93.44 | 52 | 3 270 085 | 40.08 | 94.66 | |
22 | 2 536 748 | 40.32 | 94.25 | 53 | 1 303 118 | 39.41 | 94.51 | |
23 | 3 663 842 | 40.96 | 94.71 | 54 | 3 465 111 | 38.97 | 94.13 | |
24 | 576 195 | 42.98 | 93.34 | 55 | 2 955 467 | 39.29 | 94.76 | |
25 | 5 218 665 | 39.01 | 93.00 | 56 | 4 757 901 | 39.73 | 94.79 | |
26 | 2 318 866 | 39.08 | 93.03 | 57 | 4 802 384 | 40.06 | 94.62 | |
27 | 2 752 538 | 41.06 | 94.50 | 58 | 2 339 558 | 40.16 | 94.63 | |
28 | 1 709 658 | 38.85 | 90.70 | 59 | 2 787 875 | 38.80 | 94.67 | |
29 | 3 965 547 | 38.44 | 94.48 | 60 | 1 857 241 | 42.29 | 93.80 | |
30 | 1 831 691 | 38.73 | 91.14 | SD | 7 293 431 | 42.86 | 94.33 | |
31 | 3 836 959 | 40.67 | 94.49 |
SLAF标签总数 Total of SLAF tags | 多态性SLAF标签数 Number of polymorphic SLAF tags | 非多态性SLAF标签数 Number of non-polymorphic SLAF tags | SNP总数 Total of SNP | 完整度 Integrity ratio/% | 杂合率 Hetloci ratio/% |
---|---|---|---|---|---|
1 337 217 | 1 049 638 | 287 579 | 11 248 186 | 2.71-24.89 | 1.13-5.74 |
表2 SLAF标签和SNP信息统计
Table 2 Information statistics of SLAF tags and identified SNP
SLAF标签总数 Total of SLAF tags | 多态性SLAF标签数 Number of polymorphic SLAF tags | 非多态性SLAF标签数 Number of non-polymorphic SLAF tags | SNP总数 Total of SNP | 完整度 Integrity ratio/% | 杂合率 Hetloci ratio/% |
---|---|---|---|---|---|
1 337 217 | 1 049 638 | 287 579 | 11 248 186 | 2.71-24.89 | 1.13-5.74 |
[1] | 王雁, 周进昌, 郑宝强. 石斛兰[M]. 北京: 中国林业出版社, 2015. |
Wang Y, Zhou JC, Zheng BQ. Dendrobium[M]. Beijing: China Forestry Publishing House, 2015. | |
[2] | 杨红旗, 李磊, 董薇, 等. 我国石斛植物资源分布及其新品种选育[J]. 中国种业, 2021(12): 14-21. |
Yang HQ, Li L, Dong W, et al. Distribution of Dendrobium plant resources and breeding of new varieties in China[J]. China Seed Ind, 2021(12): 14-21. | |
[3] | 郑宝强, 朱胜蕾, 李奎, 等. 中国原生种石斛兰的育种价值分析[J]. 北京林业大学学报, 2018, 40(4): 102-108. |
Zheng BQ, Zhu SL, Li K, et al. Analysis on breeding value of native Dendrobium species in China[J]. J Beijing For Univ, 2018, 40(4): 102-108. | |
[4] |
Ng TB, Liu JY, Wong JH, et al. Review of research on Dendrobium, a prized folk medicine[J]. Appl Microbiol Biotechnol, 2012, 93(5): 1795-1803.
doi: 10.1007/s00253-011-3829-7 URL |
[5] | 陈晓梅, 郭顺星. 石斛属植物化学成分和药理作用的研究进展[J]. 天然产物研究与开发, 2001, 13(1): 70-75. |
Chen XM, Guo SX. Advances in the research of constituents and pharmacology of Dendrobium[J]. Nat Prod Res Dev, 2001, 13(1): 70-75. | |
[6] |
彭婵, 张新叶, 刘宗坤, 等. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40.
doi: 10.11924/j.issn.1000-6850.casb2021-0338 |
Peng C, Zhang XY, Liu ZK, et al. Research progress of SSR molecular markers of Dendrobium plants[J]. Chin Agric Sci Bull, 2022, 38(13): 36-40. | |
[7] | 李杰, 章金辉, 朱根发, 等. 石斛属植物种质资源鉴定及指纹图谱应用研究进展[J]. 中国农学通报, 2013, 29(16): 63-68. |
Li J, Zhang JH, Zhu GF, et al. Progress in application of germplasm identification and fingerprinting of Dendrobium species[J]. Chin Agric Sci Bull, 2013, 29(16): 63-68. | |
[8] | 姜涛, 刘灵娣, 田伟, 等. 紫苏SNP分子标记开发及遗传多样性分析[J]. 分子植物育种, 2021, 19(4): 1243-1249. |
Jiang T, Liu LD, Tian W, et al. SNP molecular markers development and genetic diversity analysis of Perilla frutescens(L.)[J]. Mol Plant Breed, 2021, 19(4): 1243-1249. | |
[9] | 李娟, 林建勇, 欧汉彪, 等. 基于SLAF-seq技术的闽楠SNP标记开发及遗传多样性分析[J]. 分子植物育种, 2021, 19(13): 4517-4524. |
Li J, Lin JY, Ou HB, et al. Marker development and analysis of genetic diversity of Phoebe bournei germplasms using SLAF-seq technology[J]. Mol Plant Breed, 2021, 19(13): 4517-4524. | |
[10] |
Sun XW, Liu DY, Zhang XF, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700 URL |
[11] | 刘凯, 李开祥, 韦晓娟, 等. 基于SLAF-seq技术的金花茶SNP标记开发及遗传分析[J]. 经济林研究, 2019, 37(3): 79-83. |
Liu K, Li KX, Wei XJ, et al. Development and genetic analysis on SNP sites from Camellia nitidssima based on SLAF-seq technology[J]. Non Wood For Res, 2019, 37(3): 79-83. | |
[12] | 俞超, 陈煜, 汪财生, 等. 基于SLAF-seq技术的红心火龙果SNP位点开发及遗传分析[J]. 热带作物学报, 2017, 38(4): 591-596. |
Yu C, Chen Y, Wang CS, et al. SNP sites development by specific length amplification fragment sequencing(SLAF-seq)and genetic analysis in red pitaya[J]. Chin J Trop Crops, 2017, 38(4): 591-596. | |
[13] |
李贝贝, 张恒, 姜建福, 等. 基于SLAF-seq技术的葡萄种质遗传多样性分析[J]. 园艺学报, 2019, 46(11): 2109-2118.
doi: 10.16420/j.issn.0513-353x.2018-1089 |
Li BB, Zhang H, Jiang JF, et al. Analysis of genetic diversity of grape germplasms using SLAF-seq technology[J]. Acta Hortic Sin, 2019, 46(11): 2109-2118.
doi: 10.16420/j.issn.0513-353x.2018-1089 |
|
[14] | 李余良, 索海翠, 韩福光, 等. 基于SLAF-seq技术分析甜、糯玉米种质遗传多样性[J]. 玉米科学, 2019, 27(4): 71-78. |
Li YL, Suo HC, Han FG, et al. Analysis of genetic diversity of sweet and wax corn germplasms using SLAF-seq technology[J]. J Maize Sci, 2019, 27(4): 71-78. | |
[15] | 姜涛, 温春秀, 田伟, 等. 基于SLAF-seq技术连翘SNP分子标记开发及遗传多样性分析[J]. 分子植物育种, 2021, 19(16): 5405-5413. |
Jiang T, Wen CX, Tian W, et al. SNP molecular markers development and genetic diversity analysis of Forsythia suspensa based on SLAF-seq technology[J]. Mol Plant Breed, 2021, 19(16): 5405-5413. | |
[16] |
Lu JJ, Liu YY, Xu J, et al. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium(Orchidaceae)[J]. Front Plant Sci, 2018, 9: 398.
doi: 10.3389/fpls.2018.00398 URL |
[17] |
Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Appl Environ Microbiol, 2013, 79(17): 5112-5120.
doi: 10.1128/AEM.01043-13 URL |
[18] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[19] |
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[20] |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[21] | 林榕燕, 叶秀仙, 钟淮钦, 等. 基于SRAP分子标记的石斛兰种质资源遗传多样性分析[J]. 福建农业学报, 2018, 33(5): 469-473. |
Lin RY, Ye XX, Zhong HQ, et al. Genetic diversity of Dendrobium germplasms accessed by SRAP markers[J]. Fujian J Agric Sci, 2018, 33(5): 469-473. | |
[22] | 李永清, 江金兰, 叶炜, 等. 37份药用石斛种质资源亲缘关系的ISSR分析[J]. 福建农业学报, 2015, 30(2): 131-135. |
Li YQ, Jiang JL, Ye W, et al. Relationships among 37 germplasm resources of medicinal Dendrobium based on ISSR[J]. Fujian J Agric Sci, 2015, 30(2): 131-135. | |
[23] | 任羽, 王呈丹, 徐世松, 等. 石斛兰亲缘关系的SSR分析[J]. 热带作物学报, 2013, 34(7): 1252-1256. |
Ren Y, Wang CD, Xu SS, et al. Analysis of genetic relationship of ornamental Dendrobium by SSR marker[J]. Chin J Trop Crops, 2013, 34(7): 1252-1256. | |
[24] | 崔学强, 唐璇, 黄昌艳, 等. 基于iPBS标记的石斛兰种质资源遗传多样性分析及DNA指纹图谱构建[J]. 热带作物学报, 2021, 42(2): 317-324. |
Cui XQ, Tang X, Huang CY, et al. Genetic diversity analysis and fingerprinting construction of Dendrobium germplasm resources by iPBS marker[J]. Chin J Trop Crops, 2021, 42(2): 317-324. | |
[25] |
葛亚英, 张飞, 沈晓岚, 等. 丽穗凤梨ISSR遗传多样性分析与指纹图谱构建[J]. 中国农业科学, 2012, 45(4): 726-733.
doi: 10.3864/j.issn.0578-1752.2012.04.013 |
Ge YY, Zhang F, Shen XL, et al. Analysis of genetic diversity and construction of fingerprint of Vriesea by ISSR[J]. Sci Agric Sin, 2012, 45(4): 726-733. |
[1] | 杨世全, 彭丹, 费文杰, 杨丰, 屈高毅, 唐威威, 欧剑萍, 邓湘雯, 周波. 杉木ClKptA/Tpt1基因的克隆及其表达特性分析[J]. 生物技术通报, 2020, 36(8): 15-22. |
[2] | 张一中, 范昕琦, 杨慧勇, 张晓娟, 邵强, 梁笃, 郭琦, 柳青山, 杜维俊. 基于简化基因组测序高粱育种材料亲缘关系的分析[J]. 生物技术通报, 2020, 36(12): 21-33. |
[3] | 郭萌萌, 周延清, 段红英, 杨珂, 邵露营. 基于地黄转录组数据的SNP标记开发与地黄指纹图谱构建[J]. 生物技术通报, 2019, 35(11): 224-230. |
[4] | 刘凌燕, 陈志宇, 曾还雄, 林培彬, 金小宝. 美洲大蠊肠道内生微杆菌的分离鉴定及其抑菌活性研究[J]. 生物技术通报, 2018, 34(6): 172-177. |
[5] | 刘建兵, 戚梦, 杜苑如, 傅俊生, 胡开辉. 拆分网络分析22株蛹虫草亲缘关系及高产虫草素菌株初筛[J]. 生物技术通报, 2018, 34(4): 133-138. |
[6] | 左光宏, 郝柏林. 基于全基因组的微生物亲缘关系与分类系统研究工具——CVTree3[J]. 生物技术通报, 2015, 31(11): 60-67. |
[7] | 荆赞革, 裴徐梨, 唐征, 张小玲, 罗天宽, 刘庆, 朱世杨. 青花菜及其近缘种亲缘关系SRAP标记分析[J]. 生物技术通报, 2014, 0(6): 101-105. |
[8] | 陈秀玲, 李景富, 张丽莉, 张俊峰, 王傲雪. 一株淡色生赤壳菌的生防作用分析及系统发育树构建[J]. 生物技术通报, 2014, 0(5): 184-189. |
[9] | 魏小玲, 曹福祥, 陈建. 海南木莲遗传多样性的ISSR及亲缘关系的分析[J]. 生物技术通报, 2013, 0(8): 74-77. |
[10] | 刘天明;王会会;王娟娟;. 白地霉遗传多样性与生态地理起源地的相关性分析[J]. , 2011, 0(05): 121-125. |
[11] | 吴琼;苑琳;路福平;申明华;刘纯燕;白宇辰;. 高碱性纤维素酶产生菌的筛选及鉴定[J]. , 2010, 0(09): 205-209. |
[12] | 蔡志华;蒋德梅;陶红梅;姜计;温新福;. 东北梅花鹿居群内亲缘关系的AFLP指纹分析[J]. , 2010, 0(05): 166-172. |
[13] | 武善军;荚荣;甘露;. 一株产木质素降解酶真菌的分离与鉴定[J]. , 2009, 0(12): 172-176. |
[14] | 潘丽晶;范干群;张妙彬;肖杨;曹友培;. 石斛兰dfr基因植物表达载体的构建[J]. , 2009, 0(08): 71-75. |
[15] | 冯莹;赖钟雄;. 甘露醇在根癌农杆菌转化石斛兰中的作用[J]. , 2009, 0(06): 112-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||