[1] |
Bredenbeek PJ, Kooi EA, Lindenbach B, et al. A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication[J]. J Gen Virol, 2003, 84(5): 1261-1268.
doi: 10.1099/vir.0.18860-0
URL
|
[2] |
Beck AS, Barrett ADT. Current status and future prospects of yellow fever vaccines[J]. Expert Rev Vaccines, 2015, 14(11): 1479-1492.
doi: 10.1586/14760584.2015.1083430
pmid: 26366673
|
[3] |
Theiler M, Smith HH. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus[J]. J Exp Med, 1937, 65(6): 767-786.
doi: 10.1084/jem.65.6.767
pmid: 19870633
|
[4] |
Danet L, Beauclair G, Berthet M, et al. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti[J]. PLoS Negl Trop Dis, 2019, 13(8): e0007299.
doi: 10.1371/journal.pntd.0007299
URL
|
[5] |
Kümmerer BM. Establishment and application of Flavivirus replicons[J]. Adv Exp Med Biol, 2018, 1062: 165-173.
doi: 10.1007/978-981-10-8727-1_12
pmid: 29845532
|
[6] |
Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons[J]. Virology, 2005, 331(2): 247-259.
pmid: 15629769
|
[7] |
Junglen S, Korries M, Grasse W, et al. Host range restriction of insect-specific flaviviruses occurs at several levels of the viral life cycle[J]. mSphere, 2017, 2(1): e00375-e00316.
|
[8] |
He Y, Liu P, Wang T, et al. Genetically stable reporter virus, subgeno-mic replicon and packaging system of duck Tembusu virus based on a reverse genetics system[J]. Virology, 2019, 533: 86-92.
doi: 10.1016/j.virol.2019.05.003
URL
|
[9] |
Ansarah-Sobrinho C, Nelson S, et al. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation[J]. Virology, 2008, 381(1): 67-74.
doi: 10.1016/j.virol.2008.08.021
pmid: 18801552
|
[10] |
Harvey TJ, Liu WJ, Wang XJ, et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles[J]. J Virol, 2004, 78(1): 531-538.
pmid: 14671135
|
[11] |
Puig-Basagoiti F, Tilgner M, Forshey BM, et al. Triaryl pyrazoline compound inhibits flavivirus RNA replication[J]. Antimicrob Agents Chemother, 2006, 50(4): 1320-1329.
pmid: 16569847
|
[12] |
Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans[J]. J Virol, 1998, 72(7): 5967-5977.
pmid: 9621059
|
[13] |
Hu T, Wu Z, Wu SX, et al. Substitutions at loop regions of TMUV E protein domain III differentially impair viral entry and assembly[J]. Front Microbiol, 2021, 12: 688172.
doi: 10.3389/fmicb.2021.688172
URL
|
[14] |
Ma X, Yuan ZH, Yi ZG. Identification and characterization of key residues in Zika virus envelope protein for virus assembly and entry[J]. Emerg Microbes Infect, 2022, 11(1): 1604-1620.
doi: 10.1080/22221751.2022.2082888
URL
|
[15] |
Sangiambut S, Promphet N, Chaiyaloom S, et al. Increased capsid oligomerization is deleterious to dengue virus particle production[J]. J Gen Virol, 2021, 102(8).
|
[16] |
Tran PTH, Asghar N, Höglund U, et al. Development of a multivalent Kunjin virus reporter virus-like particle system inducing seroconversion for Ebola and west Nile virus proteins in mice[J]. Microorganisms, 2020, 8(12): 1890.
doi: 10.3390/microorganisms8121890
URL
|
[17] |
Boyer JC, Haenni AL. Infectious transcripts and cDNA clones of RNA viruses[J]. Virology, 1994, 198(2): 415-426.
pmid: 8291226
|
[18] |
Varnavski AN, Young PR, Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors[J]. J Virol, 2000, 74(9): 4394-4403.
doi: 10.1128/jvi.74.9.4394-4403.2000
pmid: 10756054
|
[19] |
Urosevic N, van Maanen M, et al. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and-resistant mice after challenge with Murray Valley encephalitis virus[J]. J Gen Virol, 1997, 78(Pt 1): 23-29.
doi: 10.1099/0022-1317-78-1-23
URL
|
[20] |
Saeedi BJ, Geiss BJ. Regulation of flavivirus RNA synthesis and capping[J]. WIREs RNA, 2013, 4(6): 723-735.
doi: 10.1002/wrna.1191
pmid: 23929625
|
[21] |
Rice CM, Grakoui A, Galler R, et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation[J]. New Biol, 1989, 1(3): 285-296.
pmid: 2487295
|
[22] |
Pu SY, Wu RH, Yang CC, et al. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes[J]. J Virol, 2011, 85(6): 2927-2941.
doi: 10.1128/JVI.01986-10
URL
|
[23] |
da Silva Santos JJ, Cordeiro MT, et al. Construction and characterisation of a complete reverse genetics system of dengue virus type 3[J]. Mem Inst Oswaldo Cruz, 2013, 108(8): 983-991.
doi: 10.1590/0074-0276130298
URL
|
[24] |
Schwarz MC, Sourisseau M, Espino MM, et al. Rescue of the 1947 zika virus prototype strain with a Cytomegalovirus promoter-driven cDNA clone[J]. mSphere, 2016, 1(5): e00246-e00216.
|
[25] |
Widman DG, Young E, Yount BL, et al. A reverse genetics platform that spans the zika virus family tree[J]. mBio, 2017, 8(2): e02014-e02016.
|
[26] |
Aubry F, Nougairède A, Gould EA, et al. Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective[J]. Antiviral Res, 2015, 114: 67-85.
doi: 10.1016/j.antiviral.2014.12.007
URL
|
[27] |
Tamura T, Zhang JY, Madan V, et al. Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1-4[J]. Emerg Microbes Infect, 2022, 11(1): 227-239.
doi: 10.1080/22221751.2021.2021808
URL
|
[28] |
Wang XL, He Y, Guo JQ, et al. Construction of an infectious clone for mosquito-derived tembusu virus prototypical strain[J]. Virol Sin, 2021, 36(6): 1678-1681.
doi: 10.1007/s12250-021-00447-y
pmid: 34570343
|
[29] |
Guo JQ, He Y, Wang L, et al. Stabilization of a full-length infectious cDNA clone for duck Tembusu virus by insertion of an intron[J]. J Virol Methods, 2020, 283: 113922.
doi: 10.1016/j.jviromet.2020.113922
URL
|
[30] |
Khromykh AA, Westaway EG. Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. J Virol, 1997, 71(2): 1497-1505.
pmid: 8995675
|
[31] |
Roby JA, Bielefeldt-Ohmann H, Prow NA, et al. Increased expression of capsid protein in trans enhances production of single-round infectious particles by West Nile virus DNA vaccine candidate[J]. J Gen Virol, 2014, 95(Pt 10): 2176-2191.
doi: 10.1099/vir.0.064121-0
pmid: 24958626
|
[32] |
Chang DC, Liu WJ, Anraku I, et al. Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus[J]. Nat Biotechnol, 2008, 26(5): 571-577.
doi: 10.1038/nbt1400
pmid: 18425125
|