[1] |
Akinnibosun OA, Maier MC, Eales J, et al. Telomere therapy for chronic kidney disease[J]. Epigenomics, 2022, 14(17): 1039-1054.
doi: 10.2217/epi-2022-0073
URL
|
[2] |
Gewin LS. Renal fibrosis: primacy of the proximal tubule[J]. Matrix Biol, 2018, 68-69: 248-262.
|
[3] |
Zhang YY, Zhu XY, Huang X, et al. Advances in understanding the effects of erythropoietin on renal fibrosis[J]. Front Med, 2020, 7: 47.
doi: 10.3389/fmed.2020.00047
URL
|
[4] |
Humphreys BD. Mechanisms of renal fibrosis[J]. Annu Rev Physiol, 2018, 80: 309-326.
doi: 10.1146/annurev-physiol-022516-034227
pmid: 29068765
|
[5] |
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease[J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
doi: 10.1038/s41581-019-0248-y
pmid: 32060481
|
[6] |
Chen YQ, Chen HY, Tang QQ, et al. Protective effect of quercetin on kidney diseases: from chemistry to herbal medicines[J]. Front Pharmacol, 2022, 13: 968226.
doi: 10.3389/fphar.2022.968226
URL
|
[7] |
Watanabe Y, Itoh S, Goto T, et al. TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling[J]. Mol Cell, 2010, 37(1): 123-134.
doi: 10.1016/j.molcel.2009.10.028
pmid: 20129061
|
[8] |
Li J, Kong WM. PMEPA1 serves as a prognostic biomarker and correlates with immune infiltrates in cervical cancer[J]. J Immunol Res, 2022, 2022: 4510462.
|
[9] |
Puteri MU, Watanabe Y, Wardhani BWK, et al. PMEPA1/TMEPAI isoforms function via its PY and Smad-interaction motifs for tumorigenic activities of breast cancer cells[J]. Genes Cells, 2020, 25(6): 375-390.
doi: 10.1111/gtc.12766
pmid: 32181976
|
[10] |
Sharad S, Dobi A, Srivastava S, et al. PMEPA1 gene isoforms: a potential biomarker and therapeutic target in prostate cancer[J]. Biomolecules, 2020, 10(9): 1221.
doi: 10.3390/biom10091221
URL
|
[11] |
Sharad S, Sztupinszki ZM, Chen YM, et al. Analysis of PMEPA1 isoforms(a and b)as selective inhibitors of androgen and TGF-β signaling reveals distinct biological and prognostic features in prostate cancer[J]. Cancers, 2019, 11(12): 1995.
doi: 10.3390/cancers11121995
URL
|
[12] |
Itoh S, Itoh F. TMEPAI family: involvement in regulation of multiple signalling pathways[J]. J Biochem, 2018, 164(3): 195-204.
doi: 10.1093/jb/mvy059
pmid: 29945215
|
[13] |
Manghwar H, Lindsey K, Zhang XL, et al. CRISPR/cas system: recent advances and future prospects for genome editing[J]. Trends Plant Sci, 2019, 24(12): 1102-1125.
doi: S1360-1385(19)30243-2
pmid: 31727474
|
[14] |
Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Mol Cancer, 2022, 21(1): 57.
doi: 10.1186/s12943-022-01518-8
|
[15] |
Khouzam JPS, Tivakaran VS. CRISPR-Cas9 applications in cardiovascular disease[J]. Curr Probl Cardiol, 2021, 46(3): 100652.
doi: 10.1016/j.cpcardiol.2020.100652
URL
|
[16] |
Xu XY, Liu C, Wang YH, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment[J]. Adv Drug Deliv Rev, 2021, 176: 113891.
doi: 10.1016/j.addr.2021.113891
URL
|
[17] |
Bao AL, Burritt DJ, Chen HF, et al. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Crit Rev Biotechnol, 2019, 39(3): 321-336.
doi: 10.1080/07388551.2018.1554621
pmid: 30646772
|
[18] |
任云晓, 肖茹丹, 娄晓敏, 等. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-28.
|
|
Ren YX, Xiao RD, Lou XM, et al. Research advance and application in the gene therapy of gene editing technologies[J]. Hereditas, 2019, 41(1): 18-28.
|
[19] |
左其生, 李东, 张亚妮, 等. CRISPR-Cas介导的基因编辑工具[J]. 生物技术通报, 2014(7): 37-43.
|
|
Zuo QS, Li D, Zhang YN, et al. Gene editing tools mediated by CRISPR-cas[J]. Biotechnol Bull, 2014(7): 37-43.
|
[20] |
陈汉宗, 梁颂, 黎新月, 等. 利用CRISPR/Cas9系统构建稳定敲除anxa6基因的Caco-2细胞株[J]. 微生物学报, 2023, 63(3): 1217-1229.
|
|
Chen HZ, Liang S, Li XY, et al. Knockout of human anxa6 gene in Caco-2 cells by CRISPR/Cas9 system[J]. Acta Microbiol Sin, 2023, 63(3): 1217-1229.
|
[21] |
刘铁柱, 李阿茜, 李川, 等. 基于CRISPR/Cas9系统建立SNX11基因敲除A549细胞系[J]. 病毒学报, 2022, 38(3): 652-657.
|
|
Liu TZ, Li AQ, Li C, et al. Construction of A SNX11-knockout A549 cell line based on the CRISPR/Cas9 system[J]. Chin J Virol, 2022, 38(3): 652-657.
|
[22] |
Sharma G, Sharma AR, Bhattacharya M, et al. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases[J]. Mol Ther, 2021, 29(2): 571-586.
doi: 10.1016/j.ymthe.2020.09.028
pmid: 33238136
|
[23] |
Bai XL, Jing L, Li YC, et al. TMEPAI inhibits TGF-β signaling by promoting lysosome degradation of TGF-β receptor and contributes to lung cancer development[J]. Cell Signal, 2014, 26(9): 2030-2039.
doi: 10.1016/j.cellsig.2014.06.001
pmid: 24933703
|
[24] |
Yoshikawa T, Sanders AR, Esterling LE, et al. Multiple transcriptional variants and RNA editing in C18orf1, a novel gene with LDLRA and transmembrane domains on 18p11.2[J]. Genomics, 1998, 47(2): 246-257.
doi: 10.1006/geno.1997.5118
URL
|
[25] |
Nakano N, Maeyama K, Sakata N, et al. C18 ORF1, a novel negative regulator of transforming growth factor-β signaling[J]. J Biol Chem, 2014, 289(18): 12680-12692.
doi: 10.1074/jbc.M114.558981
pmid: 24627487
|
[26] |
Amalia R, Abdelaziz M, Puteri MU, et al. TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells[J]. Cell Signal, 2019, 59: 24-33.
doi: S0898-6568(19)30059-2
pmid: 30890370
|
[27] |
Zhang L, Wang X, Lai C, et al. PMEPA1 induces EMT via a non-canonical TGF-β signalling in colorectal cancer[J]. J Cell Mol Med, 2019, 23(5): 3603-3615.
doi: 10.1111/jcmm.14261
pmid: 30887697
|
[28] |
Funakubo N, Xu XH, Kukita T, et al. Pmepa1 induced by RANKL-p38 MAPK pathway has a novel role in osteoclastogenesis[J]. J Cell Physiol, 2018, 233(4): 3105-3118.
doi: 10.1002/jcp.26147
pmid: 28802000
|
[29] |
HAinmhire EÓ, Quartuccio SM, Cheng W, et al. Mutation or loss of p53 differentially modifies TGFβ action in ovarian cancer[J]. PLoS One, 2014, 9(2): e89553.
doi: 10.1371/journal.pone.0089553
URL
|
[30] |
Hagg A, Kharoud S, Goodchild G, et al. TMEPAI/PMEPA1 is a positive regulator of skeletal muscle mass[J]. Front Physiol, 2020, 11: 560225.
doi: 10.3389/fphys.2020.560225
URL
|
[31] |
Li H, Chang HM, Shi ZD, et al. ID3 mediates the TGF-β1-induced suppression of matrix metalloproteinase-1 in human granulosa cells[J]. FEBS J, 2019, 286(21): 4310-4327.
doi: 10.1111/febs.14964
pmid: 31215762
|