生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 9-19.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0790
收稿日期:
2023-08-14
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
陈赢男,女,博士,教授,研究方向:林木遗传育种;E-mail: chenyingnan@njfu.edu.cn作者简介:
付威,男,硕士研究生,研究方向:林木遗传育种;E-mail: fuwei@njfu.edu.cn
基金资助:
FU Wei(), WEI Su-yun, CHEN Ying-nan()
Received:
2023-08-14
Published:
2024-02-26
Online:
2024-03-13
摘要:
准确而有效的QTL定位是克隆目的基因、开展分子育种的前提和基础。植物生长发育随外界环境因子变化而变化,其动态发育的不同时期表型是不同主效基因/QTL动态表达的结果,基于生长停滞期表型数据的传统主效基因/QTL分析只能估算QTL在多个时期的累积效应,并不能充分反映该基因位点在发育过程中的真实作用模式及效应,不能真实反映QTL在不同发育时期的动态表达模式,无法获取数量性状的动态信息。全生长周期的动态QTL分析为在分子水平上研究植物生长发育动态的遗传机制、鉴定主效基因提供了良好策略。本文总结了动态QTL分析的遗传模型、分析方法及其在植物发育数量性状定位中的研究进展,并对当前动态QTL分析存在的问题和发展趋势进行了展望,以期为植物生长发育动态QTL解析及分子标记辅助选育提供参考。
付威, 韦素云, 陈赢男. 植物生长发育动态QTL解析研究进展[J]. 生物技术通报, 2024, 40(2): 9-19.
FU Wei, WEI Su-yun, CHEN Ying-nan. Research Progress in the Dynamic QTL Analysis of Plant Growth and Development[J]. Biotechnology Bulletin, 2024, 40(2): 9-19.
[1] | 莫惠栋. 质量-数量性状的遗传分析 I.遗传组成和主基因基因型鉴别[J]. 作物学报, 1993, 19(1): 1-6. |
Mo HD. Genetic analysis for qualitative-quantitative traits I.The genetic constitution of generation populations and the identification of major gene genotypes[J]. Acta Agron Sin, 1993, 19(1): 1-6. | |
[2] |
Akagi T, Pilkington SM, Varkonyi-Gasic E, et al. Two Y-chromosome-encoded genes determine sex in kiwifruit[J]. Nat Plants, 2019, 5(8): 801-809.
doi: 10.1038/s41477-019-0489-6 pmid: 31383971 |
[3] |
Huo YQ, Pei YR, Tian YH, et al. IRREGULAR POLLENEXINE2 encodes a GDSL lipase essential for male fertility in maize[J]. Plant Physiol, 2020, 184(3): 1438-1454.
doi: 10.1104/pp.20.00105 URL |
[4] |
Serpico D. Beyond quantitative and qualitative traits: three telling cases in the life sciences[J]. Biol Philos, 2020, 35(3): 34.
doi: 10.1007/s10539-020-09750-6 |
[5] | 周元昌, 陈启锋, 吴为人, 等. 作物QTL定位研究进展[J]. 福建农业大学学报, 2000, 29(2): 138-144. |
Zhou YC, Chen QF, Wu WR, et al. A review of QTL research in crops[J]. J Fujian Agric Univ Nat Sci, 2000, 29(2): 138-144. | |
[6] |
Cui F, Li J, Ding AM, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J]. Theor Appl Genet, 2011, 122(8): 1517-1536.
doi: 10.1007/s00122-011-1551-6 pmid: 21359559 |
[7] |
Zhang L, Lu DY, Ge XL, et al. Insight into growth and wood properties based on QTL and eQTL mapping in Populus deltoides ‘Danhong’×Populus simonii ‘Tongliao1’[J]. Ind Crops Prod, 2023, 199: 116731.
doi: 10.1016/j.indcrop.2023.116731 URL |
[8] |
Yang JW, Liu ZH, Chen Q, et al. Mapping of QTL for grain yield components based on a DH population in maize[J]. Sci Rep, 2020, 10(1): 7086.
doi: 10.1038/s41598-020-63960-2 pmid: 32341398 |
[9] |
杨益善, 孙平勇, 余木兰. 水稻不育系稻粒黑粉病抗性QTL的定位[J]. 生物技术通报, 2022, 38(3): 16-21.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0934 |
Yang YS, Sun PY, Yu ML. QTL mapping for resistance to rice kernel smut of male sterile line[J]. Biotechnol Bull, 2022, 38(3): 16-21. | |
[10] |
An ZW, Zhao YH, Zhang XF, et al. A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll.Arg[J]. Ind Crops Prod, 2019, 132: 440-448.
doi: 10.1016/j.indcrop.2019.03.002 URL |
[11] | 罗艾, 龚桂芝, 彭祝春, 等. 柑橘果实大小与质量的遗传分析和数量性状位点定位[J]. 浙江大学学报: 农业与生命科学版, 2021, 47(6): 719-728. |
Luo A, Gong GZ, Peng ZC, et al. Genetic analysis and quantitative trait locus mapping of citrus fruit size and mass[J]. J Zhejiang Univ Agric Life Sci, 2021, 47(6): 719-728. | |
[12] |
Zhao JY, Becker HC, Zhang DQ, et al. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield[J]. Theor Appl Genet, 2006, 113(1): 33-38.
doi: 10.1007/s00122-006-0267-5 pmid: 16614833 |
[13] |
Atchley WR, Xu S, Vogl C. Developmental quantitative genetic models of evolutionary change[J]. Dev Genet, 1994, 15(1): 92-103.
pmid: 8187352 |
[14] |
叶明旺, 李灿辉, 龚明. 基因组编辑技术在马铃薯精准分子育种中的应用及研究展望[J]. 生物技术通报, 2020, 36(3):9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1272 |
Ye MW, Li CH, Gong M. Applications and prospect of genome editing techniques in precise potato molecular breeding[J]. Biotechnol Bull, 2020, 36(3): 9-17. | |
[15] |
Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature, 1988, 335(6192): 721-726.
doi: 10.1038/335721a0 |
[16] |
Chen F, Zhang W, Yu KJ, et al. Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L[J]. BMC Plant Biol, 2018, 18(1): 49.
doi: 10.1186/s12870-018-1268-7 |
[17] |
Liang QZ, Li PB, Hu C, et al. Dynamic QTL and epistasis analysis on seedling root traits in upland cotton[J]. J Genet, 2014, 93(1): 63-78.
doi: 10.1007/s12041-014-0341-8 pmid: 24840824 |
[18] |
Che YH, Song N, Yang YP, et al. Dynamic QTL mapping for plant height in the hybrid population of Agropyron Gaertn[J]. Plant Breed, 2020, 139(5): 1016-1028.
doi: 10.1111/pbr.v139.5 URL |
[19] |
Liu GF, Zhu HT, Liu SW, et al. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice(Oryza sativa L.)[J]. Genetica, 2010, 138(8): 885-893.
doi: 10.1007/s10709-010-9471-y URL |
[20] | 吴为人, 李维明, 卢浩然. 数量性状基因座的动态定位策略[J]. 生物数学学报, 1997, 12(S1): 490-495. |
Wu WR, Li WM, Lu HR. Strategy of dynamic mapping of quantitative trait loci[J]. J Biomath, 1997, 12(S1): 490-495. | |
[21] |
Wu RL, Lin M. Functional mapping - how to map and study the genetic architecture of dynamic complex traits[J]. Nat Rev Genet, 2006, 7(3): 229-237.
doi: 10.1038/nrg1804 pmid: 16485021 |
[22] |
Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics[J]. Genetics, 1995, 141(4): 1633-1639.
doi: 10.1093/genetics/141.4.1633 pmid: 8601500 |
[23] |
Ma CX, Casella G, Wu RL. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751-1762.
doi: 10.1093/genetics/161.4.1751 URL |
[24] | 盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 2005, 27(1): 130-136. |
Gai JY. Segregation analysis of genetic system of quantitative traits in plants[J]. Hered Beijing, 2005, 27(1): 130-136. | |
[25] |
Barton NH, Turelli M. Evolutionary quantitative genetics: how little do we know?[J]. Annu Rev Genet, 1989, 23: 337-370.
pmid: 2694935 |
[26] | 吴元奇, 唐兰, 邱贵兰, 等. 一份矮生玉米株高主基因+多基因遗传模式分析[J]. 四川农业大学学报, 2022, 40(3): 353-361. |
Wu YQ, Tang L, Qiu GL, et al. Genetic pattern analysis of the height main gene and multigene of A dwarf maize[J]. J Sichuan Agric Univ, 2022, 40(3): 353-361. | |
[27] |
Cowley DE, Atchley WR. Quantitative genetic models for development, epigenetic selection, and phenotypic evolution[J]. Evolution, 1992, 46(2): 495-518.
doi: 10.1111/j.1558-5646.1992.tb02054.x pmid: 28564019 |
[28] |
Atchley WR, Hall BK. A model for development and evolution of complex morphological structures[J]. Biol Rev Camb Philos Soc, 1991, 66(2): 101-157.
doi: 10.1111/brv.1991.66.issue-2 URL |
[29] |
Wei SY, Yang G, Yang YH, et al. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis[J]. Tree Physiol, 2022, 42(4): 877-890.
doi: 10.1093/treephys/tpab138 URL |
[30] |
解松峰, 吉万全, 张耀元, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
doi: 10.3724/SP.J.1006.2020.91044 |
Xie SF, Ji WQ, Zhang YY, et al. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat[J]. Acta Agron Sin, 2020, 46(3): 365-384.
doi: 10.3724/SP.J.1006.2020.91044 URL |
|
[31] | 张飞, 陈发棣, 房伟民, 等. 菊花营养性状杂种优势表现与主基因+多基因混合遗传分析[J]. 林业科学, 2011, 47(2): 46-52. |
Zhang F, Chen FD, Fang WM, et al. Heterosis and major gene plus polygene mixed genetic analysis for vegetative traits in Chrysanthemum[J]. Sci Silvae Sin, 2011, 47(2): 46-52. | |
[32] |
苏展, 程海涛, 郭玉华, 等. 水稻DH群体盐胁迫下苗高的主基因-多基因混合模型遗传分析[J]. 华北农学报, 2011, 26(3): 210-213.
doi: 10.7668/hbnxb.2011.03.041 |
Su Z, Cheng HT, Guo YH, et al. Genetic analysis of seedling height of rice DH population under salt stress by using major genes plus polygenes mixed model[J]. Acta Agric Boreali Sin, 2011, 26(3): 210-213. | |
[33] | 汪文祥, 胡琼, 梅德圣, 等. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应[J]. 作物学报, 2016, 42(8): 1103-1111. |
Wang WX, Hu Q, Mei DS, et al. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L[J]. Acta Agron Sin, 2016, 42(8): 1103-1111.
doi: 10.3724/SP.J.1006.2016.01103 URL |
|
[34] | 田丽波, 商桑, 李丹丹, 等. 苦瓜白粉病抗性的主基因+多基因混合遗传模型分析[J]. 热带作物学报, 2015, 36(9): 1640-1645. |
Tian LB, Shang S, Li DD, et al. Mixed major-gene plus polygenes inheritance model analysis for mildew powdery disease resistance in bitter melon[J]. Chin J Trop Crops, 2015, 36(9): 1640-1645. | |
[35] |
马麒, 李吉莲, 徐守振, 等. 陆地棉果枝夹角性状的主基因+多基因混合遗传模型分析[J]. 生物技术通报, 2022, 38(10): 148-158.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1606 |
Ma Q, Li JL, Xu SZ, et al. Genetic analysis of FBA trait in upland cotton with major gene plus polygenes mixed genetic model[J]. Biotechnol Bull, 2022, 38(10): 148-158.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1606 |
|
[36] | 盖钧镒. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003. |
Gai JY. Genetic system of quantitative traits in plants[M]. Beijing: Science Press, 2003. | |
[37] |
Siervogel RM, Weinshilboum R, Wilson AF, et al. Major gene model for the inheritance of catechol-O-methyltransferase activity in five large families[J]. Am J Med Genet, 1984, 19(2): 315-323.
doi: 10.1002/ajmg.v19:2 URL |
[38] |
Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits: 1. The model and experimental design[J]. Theor Appl Genet, 1986, 72(3): 377-383.
doi: 10.1007/BF00288576 pmid: 24247946 |
[39] |
郭淑青, 宋慧, 杨清华, 等. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(24): 5177-5193.
doi: 10.3864/j.issn.0578-1752.2021.24.002 |
Guo SQ, Song H, Yang QH, et al. Analyzing genetic effects for plant height and panicle traits by means of the mixed inheritance model of major gene plus polygene in foxtail millet[J]. Sci Agric Sin, 2021, 54(24): 5177-5193.
doi: 10.3864/j.issn.0578-1752.2021.24.002 |
|
[40] |
Wu W, Zhou Y, Li W, et al. Mapping of quantitative trait loci based on growth models[J]. Theor Appl Genet, 2002, 105(6-7): 1043-1049.
pmid: 12582932 |
[41] |
Wu RL, Ma CX, Littell RC, et al. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories[J]. Genet Res, 2002, 79(3): 235-245.
doi: 10.1017/S0016672302005633 URL |
[42] |
West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth[J]. Nature, 2001, 413(6856): 628-631.
doi: 10.1038/35098076 |
[43] |
Kirkpatrick M, Lofsvold D, Bulmer M. Analysis of the inheritance, selection and evolution of growth trajectories[J]. Genetics, 1990, 124(4): 979-993.
doi: 10.1093/genetics/124.4.979 pmid: 2323560 |
[44] |
Farnsworth KD, Niklas KJ. Theories of optimization, form and function in branching architecture in plants[J]. Funct Ecol, 1995, 9(3): 355.
doi: 10.2307/2389997 URL |
[45] |
Wu RL, Ma CX, Lin M, et al. A general framework for analyzing the genetic architecture of developmental characteristics[J]. Genetics, 2004, 166(3): 1541-1551.
pmid: 15082567 |
[46] | 高用明, 朱军. 植物QTL定位方法的研究进展[J]. 遗传, 2000, 22(3): 175-179. |
Gao YM, Zhu J. Advance on methodology of QTL mapping for plants[J]. Hered Beijing, 2000, 22(3): 175-179. | |
[47] | 朱军. 数量性状基因定位的混合线性模型分析方法[J]. 遗传, 1998, 20(S1): 139-140. |
Zhu J. Mixed linear model analysis method for quantitative trait gene mapping[J]. Hereditas: Beijing, 1998, 20(S1): 139-140. | |
[48] | 朱军. 运用混合线性模型定位复杂数量性状基因的方法[J]. 浙江大学学报: 自然科学版, 1999, 33(3): 327-335. |
Zhu J. Mixed model approaches of mapping genes for complex quantitative traits[J]. J Zhejiang Univ Nat Sci, 1999, 33(3): 327-335. | |
[49] | 叶子弘, 朱军. 数量性状发育遗传模型及其分析方法的研究进展[J]. 遗传, 2001, 23(1): 65-68. |
Ye ZH, Zhu J. Advance in developmental genetic models and analysis methods for quantitative traits[J]. Hered Beijing, 2001, 23(1): 65-68. | |
[50] |
Guo X, Wu CN, Wang DH, et al. Conditional QTL mapping for seed germination and seedling traits under salt stress and candidate gene prediction in wheat[J]. Sci Rep, 2022, 12(1): 21010.
doi: 10.1038/s41598-022-25703-3 pmid: 36471100 |
[51] |
Yu M, Chen GY. Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat[J]. SpringerPlus, 2013, 2(1): 245.
doi: 10.1186/2193-1801-2-245 pmid: 23750334 |
[52] |
Wang L, Cui F, Wang JP, et al. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components[J]. J Genet, 2012, 91(3): 303-312.
pmid: 23271016 |
[53] |
Fan XL, Cui F, Ji J, et al. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping[J]. Front Plant Sci, 2019, 10: 187.
doi: 10.3389/fpls.2019.00187 pmid: 30863417 |
[54] |
Zhao FM, Liu GF, Zhu HT, et al. Unconditional and conditional QTL mapping for tiller numbers at various stages with single segment substitution lines in rice(Oryza sativa L.)[J]. Agric Sci China, 2008, 7(3): 257-265.
doi: 10.1016/S1671-2927(08)60064-4 URL |
[55] |
Zhang ZH, Liu ZH, Cui ZT, et al. Genetic analysis of grain filling rate using conditional QTL mapping in maize[J]. PLoS One, 2013, 8(2): e56344.
doi: 10.1371/journal.pone.0056344 URL |
[56] |
Zhang ZH, Wu XY, Shi CN, et al. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population[J]. Mol Genet Genomics, 2016, 291(1): 437-454.
doi: 10.1007/s00438-015-1121-8 URL |
[57] |
Wang XD, Wang H, Long Y, et al. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L[J]. Theor Appl Genet, 2015, 128(6): 1175-1192.
doi: 10.1007/s00122-015-2498-9 URL |
[58] | 卫巍. 林木QTL功能作图统计方法[D]. 南京: 南京林业大学, 2009. |
Wei W. Functional mapping of quantitative trait loci in a full-sib family in forest trees[D]. Nanjing: Nanjing Forestry University, 2009. | |
[59] |
Li ZT, Sillanpää MJ. Dynamic quantitative trait locus analysis of plant phenomic data[J]. Trends Plant Sci, 2015, 20(12): 822-833.
doi: S1360-1385(15)00227-7 pmid: 26482958 |
[60] |
Wu YD, Wang Y, Fan XC, et al. QTL mapping for berry shape based on a high-density genetic map constructed by whole-genome resequencing in grape[J]. Hortic Plant J, 2023, 9(4): 729-742.
doi: 10.1016/j.hpj.2022.11.005 URL |
[61] |
Miedaner T, Haffke S, Siekmann D, et al. Dynamic quantitative trait loci(QTL)for plant height predict biomass yield in hybrid rye(Secale cereale L.)[J]. Biomass Bioenergy, 2018, 115: 10-18.
doi: 10.1016/j.biombioe.2018.04.001 URL |
[62] |
Zhang MN, Zeng Q, Liu H, et al. Identification of a stable major QTL for fresh-seed germination on chromosome Arahy.04 in cultivated peanut(Arachis hypogaea L.)[J]. Crop J, 2022, 10(6): 1767-1773.
doi: 10.1016/j.cj.2022.03.012 URL |
[63] |
Li K, Yang X, Liu XG, et al. QTL analysis for developmental behavior of cell wall components and forage digestibility in maize(Zea mays L.)[J]. Journal of Integrative Agriculture, 2022, 21(12): 3501-3513.
doi: 10.1016/j.jia.2022.08.090 URL |
[64] |
Zhang H, Chen JS, Li RY, et al. Conditional QTL mapping of three yield components in common wheat(Triticum aestivum L.)[J]. Crop J, 2016, 4(3): 220-228.
doi: 10.1016/j.cj.2016.01.007 |
[65] |
Bu YP, Zhang X, Wang CC, et al. Conditional and unconditional QTL analyses of seed hardness in vegetable soybean(Glycine max L. Merr.)[J]. Euphytica, 2018, 214(12): 237.
doi: 10.1007/s10681-018-2308-y |
[66] |
Su JS, Yang XC, Zhang F, et al. Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum[J]. Planta, 2018, 247(4): 899-924.
doi: 10.1007/s00425-017-2833-2 pmid: 29273861 |
[67] | 李海洋. 烟草青枯病抗性的动态QTL定位[D]. 广州: 广州大学, 2018. |
Li HY. Dynamic QTL mapping for bacterial wilt resistance in tobacco[D]. Guangzhou: Guangzhou University, 2018. | |
[68] |
Xie LX, Tan ZW, Zhou Y, et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. J Integr Plant Biol, 2014, 56(8): 749-759.
doi: 10.1111/jipb.12190 |
[69] |
Bu SH, Zhan PL, Huang LL, et al. Identification, interaction, expression, and function of QTLs on leaf numbers with single-segment substitution lines in rice[J]. Agronomy, 2022, 12(12): 2968.
doi: 10.3390/agronomy12122968 URL |
[70] |
Zheng LN, Zhang WW, Chen XG, et al. Dynamic QTL analysis of rice protein content and protein index using recombinant inbred lines[J]. J Plant Biol, 2011, 54(5): 321-328.
doi: 10.1007/s12374-011-9170-y URL |
[71] |
Zhang B, Tong CF, Yin TM, et al. Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping[J]. Tree Genet Genomes, 2009, 5(3): 539-552.
doi: 10.1007/s11295-009-0207-z URL |
[72] | 韦素云. 簸箕柳生长节律性状遗传机制解析[D]. 南京: 南京林业大学, 2020. |
Wei SY. Genetic dissection for growth rhythm of Salix suchowensis[D]. Nanjing: Nanjing Forestry University, 2020. | |
[73] |
Zhang MM, Bo WH, Xu F, et al. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica[J]. Plant J, 2017, 90(5): 918-928.
doi: 10.1111/tpj.2017.90.issue-5 URL |
[74] | 任翔宇. 光照影响的拟南芥表型可塑性基因定位研究[D]. 北京: 北京林业大学, 2021. |
Ren XY. QTL mapping for phenotypic plasticity in Arabidopsis thaliana under light effects[D]. Beijing: Beijing Forestry University, 2021. |
[1] | 马麒, 李吉莲, 徐守振, 陈红, 刘文豪, 宁新柱, 林海. 陆地棉果枝夹角性状的主基因+多基因混合遗传模型分析[J]. 生物技术通报, 2022, 38(10): 148-158. |
[2] | 李巍;萧浪涛;. GAI/RGA蛋白家族的研究进展[J]. , 2007, 0(05): 39-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||