生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0769

• 未来食品工程专题 •    

生物基纳米食品工程研究进展、挑战与前景

刘言1,2(), 朱龙佼1,2, 张文强3, 许文涛1,2()   

  1. 1.中国农业大学营养与健康系,北京 100191
    2.食品精准营养与质量控制教育部重点实验室,北京 100191
    3.中国农业大学工学院,北京 100083
  • 收稿日期:2025-07-17 出版日期:2025-10-14 发布日期:2025-10-14
  • 通讯作者: 许文涛,男,博士,教授,研究方向:生物安全、功能核酸及功能食品;E-mail: xuwentao@ cau.edu.cn
  • 作者简介:刘言,女,博士研究生,研究方向:营养与食品安全;E-mail: liuyanlynn@yeah.net
  • 基金资助:
    北京市科技新星交叉(20230484463);国中康健集团科技项目(GZKJ-KJXX-QTHT-20230626)

Progress, Challenges, and Prospects in Biobased Nanotechnology for Food Engineering

LIU Yan1,2(), ZHU Long-jiao1,2, ZHANG Wen-qiang3, XU Wen-tao1,2()   

  1. 1.Department of Nutrition and Health, China Agricultural University, Beijing 100191
    2.Key Laboratory of Food Precision Nutrition and Quality Control, Ministry of Education, Beijing 100191
    3.College of Engineering, China Agricultural University, Beijing 100083
  • Received:2025-07-17 Published:2025-10-14 Online:2025-10-14

摘要:

生物基纳米食品工程系一门新兴交叉学科,其致力于通过纳米尺度技术调控天然生物基材料(如脂质、蛋白质、多糖、生物源囊泡及核酸)的结构与性能,以实现食品的功能化提升,具体包括增强营养价值、延长保鲜期、改善感官特性及提高安全性。本文系统综述了该领域近期研究进展,重点归纳了五类生物基纳米载体(脂质类、蛋白质类、多糖类、生物源囊泡类、核酸类)的制备策略(包括自上而下法、自下而上法及混合方法)及其在生物活性成分递送中的应用,展现了该类载体在增强活性成分稳定性、生物利用度与靶向递送性能方面的显著优势。文章进一步分析了该技术产业化面临的主要挑战:在技术层面,仍面临规模化制备过程中的稳定性与可控性瓶颈;在安全与法规层面,亟待建立统一的纳米材料风险评估标准与监管框架;在市场层面,则需应对公众认知局限与接受度不足的问题。最后,展望了多学科融合推动的智能化与绿色化发展路径,包括智能响应型载体设计、合成生物学技术驱动的生物合成平台、人工智能辅助设计系统以及多组分协同递送体系,并强调应同步完善安全评价与监管体系,以促进该技术的规范化应用与食品产业的可持续发展。

关键词: 生物基纳米食品工程, 生物基纳米载体, 功能化食品, 纳米递送系统, 技术挑战, 法规标准

Abstract:

Bio-based nanofood engineering is an emerging interdisciplinary field that employs nanoscale technologies to modulate the structures and properties of natural bio-based materials (lipids, proteins, polysaccharides, biogenic vesicles, and nucleic acids) with the aim of enhancing food functionality. Such advancements include improving nutritional value, prolonging shelf life, optimizing sensory attributes, and strengthening food safety. This review provides a comprehensive overview of recent progress in the field, with particular attention to the preparation strategies of five major categories of bio-based nanocarriers (lipid-based, protein-based, polysaccharide-based, bio-derived vesicles, and nucleic acid-based). These strategies, encompassing top-down, bottom-up, and hybrid approaches, have shown significant potential in the delivery of bioactive compounds by improving their stability, bioavailability, and targeted release. The review further discusses key challenges for industrial translation: bottlenecks in stability and process controllability during large-scale preparation at the technical level; being urgent to establish the unified risk assessment standards and regulatory frameworks for nanomaterials at safety and regulatory level; and the issues of limited public awareness and insufficient acceptance at market level. Finally, the review prospects the intelligent and green development path driven by multidisciplinary integration, including intelligent responsive carrier design, biosynthesis platform driven by synthetic biology technology, AI-assisted design system and multi-component coordinated delivery system. The review also emphasizes the simultaneous development of safety evaluation and regulatory systems to promote standardized application of this technology and the sustainable growth of the food industry.

Key words: biobased nanotechnology for food engineering, biobased nanocarriers, functional foods, nanodelivery systems, technical challenges, regulatory standards