[1] Bruckner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology[J]. Int J Mol Sci, 2009, 10(6): 2763- 2788. [2] Fields S, Song O. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(6230): 245-246. [3] Caufield JH, Sakhawalkar N, Uetz P. A comparison and optimization of yeast two-hybrid systems[J]. Methods, 2012, 58(4): 317- 324. [4] Huang H, Jedynak BM, Bader JS. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps[J]. PLoS Comput Biol, 2007, 3(11): e214. [5] Braun P, Tasan M, Dreze M, et al. An experimentally derived confidence score for binary protein-protein interactions[J]. Nat Methods, 2009, 6(1): 91-97. [6] Vidal M, Brachmann RK, Fattaey A, et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions[J]. Proc Natl Acad Sci USA, 1996, 93 (19): 10315-10320. [7] Bennett MA, Shern JF, Kahn RA. Reverse two-hybrid techniques in the yeast Saccharomyces cerevisiae[J]. Methods Mol Biol, 2004,261: 313-326. [8] Li JJ, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science,1993, 262(5141): 1870-1874. [9] Klein P, Dietz KJ. Identification of DNA-binding proteins and protein-protein interactions by yeast one-hybrid and yeast two-hybrid screen[J]. Methods Mol Biol, 2010, 639: 171-192. [10] SenGupta DJ, Zhang B, Kraemer B, et al. A three-hybrid system to detect RNA-protein interactions in vivo[J]. Proc Natl Acad Sci USA, 1996, 93(16): 8496-8501. [11] Serebriiskii I, Khazak V, Golemis EA. A two-hybrid dual bait system to discriminate specificity of protein interactions[J]. J Biol Chem, 1999, 274(24): 17080-17087. [12] Serebriiskii IG, Kotova E. Analysis of protein-protein interactions utilizing dual bait yeast two-hybrid system[J]. Methods Mol Biol,2004, 261: 263-296. [13] James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast[J].Genetics, 1996, 144(4): 1425-1436. [14] Shaffer HA, Rood MK, Kashlan B, et al. BAPJ69-4A: a yeast twohybrid strain for both positive and negative genetic selection[J].J Microbiol Methods, 2012, 91(1): 22-29. [15] Chen J, Zhou J, Bae W, et al. A yEGFP-based reporter system for high-throughput yeast two-hybrid assay by flow cytometry[J].Cytometry A, 2008, 73(4): 312-320. [16] Damon C, Boxus M, Twizere JC, et al. An eYFP reporter gene for the yeast two-hybrid system[J]. Protein J, 2013, 32(2): 126- 130. [17] Chen J, Carter MB, Edwards BS, et al. High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions[J]. Cytometry A, 2012,81(1): 90-98. [18] Stellberger T, Hauser R, Baiker A, et al. Improving the yeast twohybrid system with permutated fusions proteins: the Varicella Zoster Virus interactome[J]. Proteome Sci, 2010, 8: 8. [19] Stellberger T, Hauser R, Uetz P, et al. Yeast two-hybrid screens: improvement of array-based screening results by N- and C-terminally tagged fusion proteins[J]. Methods Mol Biol, 2012, 815: 277-288. [20] Karimova G, Pidoux J, Ullmann A, et al. A bacterial two-hybrid system based on a reconstituted signal transduction pathway[J].Proc Natl Acad Sci U S A, 1998, 95(10): 5752-5756. [21] Pellis M, Muyldermans S, Vincke C. Bacterial two hybrid: a versatile one-step intracellular selection method[J]. Methods Mol Biol, 2012, 911: 135-150. [22] Kim KM, Adyshev DM, Kasa A, et al. Putative protein partners for the human CPI-17 protein revealed by bacterial two-hybrid screening[J]. Microvasc Res, 2013, 88: 19-24. [23] Battesti A, Bouveret E. Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors[J]. Proteomics, 2008, 8(22): 4768-4771. [24] Luo Y, Batalao A, Zhou H, et al. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system[J].Biotechniques, 1997, 22(2): 350-352. [25] Lee JW, Lee SK. Mammalian two-hybrid assay for detecting proteinprotein interactions in vivo[J]. Methods Mol Biol, 2004, 261: 327-336. [26] Eyckerman S, Verhee A, der Heyden JV, et al. Design and application of a cytokine-receptor-based interaction trap[J]. Nat Cell Biol, 2001, 3(12): 1114-1119. [27] Thibodeaux GN, Cowmeadow R, Umeda A, et al. A tetracycline repressor-based mammalian two-hybrid system to detect proteinprotein interactions in vivo[J]. Anal Biochem, 2009, 386(1): 129-131. [28] Moncivais K, Zhang ZJ. Tetracycline repressor-based mammalian two-hybrid systems[J]. Methods Mol Biol, 2012, 812: 259-273. [29] Lievens S, Caligiuri M, Kley N, et al. The use of mammalian twohybrid technologies for high-throughput drug screening[J].Methods, 2012, 58(4): 335-342. [30] Guo M, Xia Z, Ma H. Functional phosphosite screening for targeted protein-protein interactions by combining phosphoproteomics strategies and mammalian two-hybrid assays[J]. Mol Biosyst,2011, 7(6): 1838-1841. [31] Aronheim A. Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives[J]. Nucleic Acids Res, 1997, 25(16): 3373- 3374. [32] Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo[J]. Proc Natl Acad Sci U S A, 1994, 91(22): 10340-10344. [33] Wehr MC, Laage R, Bolz U, et al. Monitoring regulated proteinprotein interactions using split TEV. Nat Methods, 2006, 3: [J] (12) 985-993. [34] Schonhofer-Merl S, Torres-Ruiz RA. The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2[J].Mol Genet Genomics, 2010, 283(5): 439-449. [35] Moerdyk-Schauwecker M, Destephanis D, Hastie E, et al. Detecting protein-protein interactions in vesicular stomatitis virus using a cytoplasmic yeast two hybrid system[J]. J Virol Methods, 2011,173(2): 203-212. [36] Petschnigg J, Wong V, Snider J, et al. Investigation of membrane protein interactions using the split-ubiquitin membrane yeast twohybrid system[J]. Methods Mol Biol, 2012, 812: 225-244. [37] Harty C, Romisch K. Analysis of Sec61p and Ssh1p interactions in the ER membrane using the split-ubiquitin system[J]. BMC Cell Biol, 2013, 14: 14. [38] Wehr MC, Reinecke L, Botvinnik A, et al. Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV[J]. BMC Biotechnol, 2008, 8: 55. [39] Capdevila-Nortes X, Lopez-Hernandez T, Ciruela F, et al. A modification of the split-tobacco etch virus method for monitoring interactions between membrane proteins in mammalian cells[J].Anal Biochem, 2012, 423(1): 109-118. [40] Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease[J].Cell, 2010, 142(4): 637-646. [41] Mockli N, Auerbach D. Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system[J]. Biotechniques, 2004, 36(5): 872-876. [42] Diaz-Camino C, Risseeuw EP, Liu E, et al. A high-throughput system for two-hybrid screening based on growth curve analysis in microtiter plates[J]. Anal Biochem, 2003, 316(2): 171-174. [43] Rid R, Herzog J, Maier RH, et al. Real-time monitoring of relative peptide-protein interaction strengths in the yeast two-hybrid system[J]. Assay Drug Dev Technol, 2013, 11(4): 269-275. [44] Maier RH, Maier CJ, Hintner H, et al. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system[J]. Methods,2012, 58(4): 376-384. [45] Lin HY, Lin SE, Chien SF, et al. Electroporation for three commonly used yeast strains for two-hybrid screening experiments[J]. Anal Biochem, 2011, 416(1): 117-119. [46] Rajagopala SV, Hughes KT, Uetz P. Benchmarking yeast two-hybrid systems using the interactions of bacterial motility proteins[J].Proteomics, 2009, 9(23): 5296-5302. [47] Liu Y, Merchant Z, Hsiao HC, et al. Media composition influences yeast one- and two-hybrid results[J]. Biol Proced Online, 2011,13: 6. [48] Worseck JM, Grossmann A, Weimann M, et al. A stringent yeast two-hybrid matrix screening approach for protein-protein interaction discovery[J]. Methods Mol Biol, 2012, 812: 63-87. [49] Yoon JM, Nakajima M, Mashiguchi K, et al. Chemical screening of an inhibitor for gibberellin receptors based on a yeast two-hybrid system[J]. Bioorg Med Chem Lett, 2013, 23(4): 1096-1098. [50] Kim S, Min IM, Ren S, et al. Development of temperature-sensitive mutants of the Drosophila melanogaster P-TEFb(Cyclin T/CDK9) heterodimer using yeast two-hybrid screening[J]. Biochem Biophys Res Commun, 2013, 433(2): 243-248. [51] Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J].Nature, 2000, 403(6770): 623-627. [52] Yu H, Braun P, Yildirim MA, et al. High-quality binary protein interaction map of the yeast interactome network[J]. Science,2008, 322(5898): 104-110. [53] Giot L, Bader JS, Brouwer C, et al. A protein interaction map of Drosophila melanogaster[J]. Science, 2003, 302(5651): 1727-1736. [54] Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome[J].Cell, 2005, 122(6): 957-968. [55] Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network[J]. Nature,2005, 437(7062): 1173-1178. [56] Simonis N, Rual JF, Carvunis AR, et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network[J]. Nat Methods, 2009, 6(1): 47-54. [57] Bandyopadhyay S, Chiang CY, Srivastava J, et al. A human MAP kinase interactome[J]. Nat Methods, 2010, 7(10): 801-805. [58] Singh R, Lee MO, Lee JE, et al. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system[J]. Plant Physiol, 2012, 160(1): 477-487. [59] Chen JY, Chen WN, Poon KM, et al. Interaction between SARSCoV helicase and a multifunctional cellular protein(Ddx5) revealed by yeast and mammalian cell two-hybrid systems[J].Arch Virol, 2009, 154(3): 507-512. [60] Silva EM, Conde JN, Allonso D, et al. Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner[J]. PLoS One, 2013, 8(3): e57514. [61] Lopez-Mateo I, Villaronga MA, Llanos S, et al. The transcription factor CREBZF is a novel positive regulator of p53[J]. Cell Cycle, 2012, 11(20): 3887-3895. [62] Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery[J]. Trends Pharmacol Sci, 2012, 33(2): 109-118. [63] Vielemeyer O, Nizak C, Jimenez AJ, et al. Characterization of single chain antibody targets through yeast two hybrid[J]. BMC Biotechnol, 2010, 10: 59. [64] Ding L, Azam M, Lin YH, et al. Generation of high-affinity fully human anti-interleukin-8 antibodies from its cDNA by two-hybrid screening and affinity maturation in yeast[J]. Protein Sci, 2010,19(10): 1957-1966. [65] Urano E, Kuramochi N, Ichikawa R, et al. Novel postentry inhibitor of human immunodeficiency virus type 1 replication screened by yeast membrane-associated two-hybrid system[J]. Antimicrob Agents Chemother, 2011, 55(9): 4251-4260. [66] Fields S. Interactive learning: lessons from two hybrids over two decades[J]. Proteomics, 2009, 9(23): 5209-5213. |