生物技术通报 ›› 2015, Vol. 31 ›› Issue (1): 21-28.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.003
闫洪波1,2 王威2 李令娣2 安万昌2
收稿日期:
2014-04-18
出版日期:
2015-01-09
发布日期:
2015-01-10
作者简介:
闫洪波,男,博士,研究方向:工业微生物基因工程改造;E-mail:hongbo_1981@126.com
基金资助:
Yan Hongbo, Wang Wei1,2, Li Lingdi1,2, An Wanchang2
Received:
2014-04-18
Published:
2015-01-09
Online:
2015-01-10
摘要: 原核生物的精氨酸生物合成包含8个酶系,起始于乙酰谷氨酸激酶催化的谷氨酸的乙酰化。到第五步乙酰基团脱离,乙酰谷氨酸通过3个酶的作用,进一步合成乙酰化中间产物。鸟氨酸被氨甲酰基化生成瓜氨酸,天冬氨酸介入后形成精氨琥珀酸,最后形成终产物精氨酸。主要就精氨酸生物合成途径、合成过程中主要酶系及反馈抑制蛋白的作用机制进行了概述。此外,提出了目前精氨酸代谢研究中存在的问题及未来的研究方向。
闫洪波,王威,李令娣,安万昌. 原核细胞精氨酸生物合成途径的研究进展[J]. 生物技术通报, 2015, 31(1): 21-28.
Yan Hongbo, Wang Wei, Li Lingdi, An Wanchang. Research Progress of the Arginine Biosynthetic Pathway in Prokaryotic Cells[J]. Biotechnology Bulletin, 2015, 31(1): 21-28.
[1] Schneider BL, Kiupakis AK, Reitzer LJ. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli[J]. Journal of Bacteriology, 1998, 180(16):4278-4286. [2] Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains[J]. Applied Microbiology and Biotechnology, 2006, 70(3):261-272. [3] Rajagopal BS, Depo--nte J, Tuchman M, et al. Use of inducible feedback-resistant N-acetylglutamate synthetase(argA)genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strai--ns[J]. Ap--plied and Environmental Microbiology, 1998, 64(5):1805-1811. [4] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer[J]. Applied and Environmental Microbiology, 2009, 75(6):1635-1641. [5] Appleton J. Arginine:clinical potential of a semi-essential amino acid[J]. Alternative Medicine Review, 2002, 7(6):512-522. [6] Haynes JJr, Baliga BS, Obiako B, et al. Zileuton induces hemoglobin F synthesis in erythroid progenitors:role of the L-arginine-nitric oxide signaling pathway[J]. Blood, 2004, 103(10):3945-3950. [7] Olinto SC, Adriao MG, Castro-Barbosa T, et al. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries[J]. Brazilian Journal of Medical and Biological Research, 2012, 45(11):1066-1073. [8] Gonzaga Silva LF, Odorico de Moraes M, Santos Dias Soares F, et al. Effects of L-arginine-enriched total enteral nutrition on body weight gain, tumor growth, and in vivo concentrations of blood and tissue metabolites in rats inoculated with Walker tumor in the kidney[J]. Nutrition, 2004, 20(2):225-229. [9] Suliburska J, Bogdanski P, Krejpcio Z, et al. The effects of L-arginine, alone and combined with vitamin C, on mineral status in relation to its antidiabetic, anti-inflammatory, and antioxidant properties in male rats on a high-fat diet[J]. Biological Trace Element Research, 2014, 157(1):67-74. [10] Nesher N, Frolkis I, Schwartz D, et al. L-Arginine improves endothelial function, independently of arginine uptake, in aortas from chronic renal failure female rats[J]. American Journal of Physiology Renal Physiology, 2014, 306(4):F449-456. [11] Caldovic L, Tuchman M. N-acetylglutamate and its changing role through evolution[J]. The Biochemical Journal, 2003, 372(Pt 2):279-290. [12] Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis:a reappraisal of the enzymology and evolution of the pathway in microorganisms[J]. Microbiology and Molecular Biology Reviews, 2007, 71(1):36-47. [13] Petri K, Walter F, Persicke M, et al. A novel type of N-acetylgluta-mate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum[J]. BMC Genomics, 2013, 14:713. [14] Jones ME. Catalysts of the urea cyclea[J]. Transactions of the New York Academy of Sciences, 1983, 41(1 Series II):77-82. [15] Alonso E, Rubio V. Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation[J]. The Biochemical Journal, 1989, 259(1):131-138. [16] Gil-Ortiz F, Ramon-Maiques S, Fernandez-Murga ML, et al.Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations[J]. Journal of Molecular Biology, 2010, 399(3):476-490. [17] Cunin R, Glansdorff N, Piérard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria[J]. Microbiol Rev, 1986, 50(3):314-352. [18] Harris BZ, Singer M. Identification and characterization of the Myxococcus xanthus argE gene[J]. Journal of Bacteriology, 1998, 180(23):6412-6414. [19] Van de Casteele M, Legrain C, Desmarez L, et al. Pathways of arginine biosynthesis in extreme thermophilic archaeo and eubacteria[J]. Journal of General Microbiology, 1990, 136:1177-1183. [20] Xu Y, Liang ZY, Legrain C, et al. Evolution of arginine biosynthesis in the bacterial domain:novel gene-enzyme relationships from psychrophilic Moritella strains(Vibrionaceae)and evolutionary significance of N-alpha-acetyl ornithinase[J]. Journal of Bacteriology, 2000, 182(6):1609-1615. [21] Udaka S. Pathway-specific pattern of control of arginine biosynth-esis in bacteria[J]. Journal of Bacteriology, 1966, 91(2):617-621. [22] Qu Q, Morizono H, Shi D, et al. A novel bifunctional N-acetylgluta-mate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase[J]. BMC Biochemistry, 2007, 8:4. [23] Haas D, Holloway BW, Schambock A, et al. The genetic organiza-tion of arginine biosynthesis in Pseudomonas aeruginosa[J]. Molecular & General Genetics, 1977, 154(1):7-22. [24] Floriano B, Herrero A, Flores E. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120[J]. Journal of Bacteriology, 1994, 176(20):6397-6401. [25] Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of My-cobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998, 393(6685):537-544. [26] Jiao H. Analysis of the arginine biosynthetic gene cluster argCJBD-FR of Corynebacterium crenatum[J]. Journal of Biomedical Science and Engineering, 2011, 4(1):70-75. [27] Yim SH, Jung S, Lee SK, et al. Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutami-cum[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12):1911-1920. [28] Caldovic L, Ah Mew N, Shi D, et al. N-acetylglutamate synthase:structure, function and defects[J]. Molecular Genetics and Metabolism, 2010, 100(Suppl 1):S13-19. [29] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Site-directed mutagenesis studies of acetylglutamate synthase delineate the site for the arginine inhibitor[J]. FEBS Letters, 2008, 582(7):1081-1086. [30] Cunin R, Glansdorff N, Pierard A, et al. Biosynthesis and metabol-ism of arginine in bacteria[J]. Microbiol Rev, 1986, 50(3):314-352. [31] Maas WK, Novelli GD, Lipmann F. Acetylation of glutamic acid by extracts of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1953, 39(10):1004-1008. [32] Parra-Gessert L, Koo K, Fajardo J, et al. Processing and function of a polyprotein precursor of two mitochondrial proteins in neurospora crassa[J]. The Journal of Biological Chemistry, 1998, 273(14):7972-7980. [33] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis[J]. FEBS Letters, 2009, 583(1):202-206. [34] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Functional dissection of N-acetylglutamate synthase(ArgA)of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity[J]. Journal of Bacteriology, 2012, 194(11):2791-2801. [35] Gil-Ortiz F, Ramón-Maiques S, Fita I, et al. The course of phosphorus in the reaction of N-acetyl-l-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AlF(4)(-)transition state mimic[J]. Journal of Molecular Biology, 2003, 331(1):231-244. [36] Marco-Marín C, Ramón-Maiques S, Tavárez S, et al. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase[J]. Journal of Molecular Biology, 2003, 334(3):459-476. [37] Ramon-Maiques S, Fernandez-Murga ML, Gil-Ortiz F, et al. Struct-ural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa[J]. Journal of Molecular Biology, 2006, 356(3):695-713. [38] Sundaresan R, Ragunathan P, Kuramitsu S, et al. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus rev-eals an intermediate active site conformation of the enzyme[J]. Biochemical and Biophysical Research Communications, 2012, 420(3):692-697. [39] Baetens M, Legrain C, Boyen A, et al. Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27[J]. Microbiology, 1998, 144(Pt 2):479-492. [40] Lee SY, Shin HS, Park JS, et al. Proline reduces the binding of tra-nscriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2010, 86(1):235-242. [41] Lee SY, Kim YH, Min J. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum[J]. Current Microbiology, 2009, 59(4):483-488. [42] Lee SY, Park JM, Lee JH, et al. Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2011, 77(3):711-718. [43] Martin PR, Mulks MH. Molecular characterization of the argJ mutation in Neisseria gonorrhoeae strains with requirements for arginine, hypoxanthine, and uracil[J]. Infection and Immunity, 1992, 60(3):970-975. [44] Martin PR, Mulks MH. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1992, 174(8):2694-2701. [45] Shinners EN, Catlin BW. Arginine biosynthesis in Neisseria gonorr hoeae:enzymes catalyzing the formation of ornithine and citrul-line[J]. Journal of Bacteriology, 1978, 136(1):131-135. [46] De Rijcke M, Seneca S, Punyammalee B, et al. Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine[J]. Molecular and Cellular Biology, 1992, 12(1):68-81. [47] Marc F, Weigel P, Legrain C, et al. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms[J]. Eur J Biochem, 2000, 267(16):5217-5226. [48] Marc F, Weigel P, Legrain C, et al. An invariant threonine is invo-lved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase[J]. The Journal of Biological Chemistry, 2001, 276(27):25404-25410. [49] Hirvonen AP, Vogel HJ. Response of argR- spheroplasts of Escherichia coli to extracted arginine repressor[J]. Biochemical and Biophysical Research Communications, 1970, 41(6):1611-1616. [50] Hoet PP, Wiame JM. On the nature of argR mutations is Saccharomyces cerevisiae[J]. European Journal of Biochemistry / FEBS, 1974, 43(1):87-92. [51] Kelln RA, Foltermann KF, O’Donovan GA. Location of the argR gene on the chromosome of Salmonella typhimurium[J]. Molecular & General Genetics, 1975, 139(4):277-284. [52] Park SM, Lu CD, Abdelal AT. Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons[J]. Journal of Bacteriology, 1997, 179(17):5309-5317. [53] Cherney LT, Cherney MM, Garen CR, et al. Crystal structure of the intermediate complex of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator reveals detailed mechanism of arginine repression[J]. Journal of Molecular Biology, 2010, 399(2):240-254. [54] Perez-Redondo R, Rodriguez-Garcia A, Botas A, et al. ArgR of Streptomyces coelicolor is a versatile regulator[J]. PloS One, 2012, 7(3):e32697. [55] Lim DB, Oppenheim JD, Eckhardt T, et al. Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(19):6697-6701. [56] Maas WK. The arginine repressor of Escherichia coli[J]. Microbiol Rev, 1994, 58(4):631-640. [57] Grandori R, Lavoie TA, Pflumm M, et al. The DNA-binding domain of the hexameric arginine repressor[J]. Journal of Molecular Biology, 1995, 254(2):150-162. [58] Tian G, Lim D, Carey J, et al. Binding of the arginine repressor of Escherichia coli K12 to its operator sites[J]. Journal of Molecular Biology, 1992, 226(2):387-397. [59] Charlier D, Roovers M, Van Vliet F, et al. Arginine regulon of Escherichia coli K-12. a study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression[J]. Journal of Molecular Biology, 1992, 226(2):367-386. [60] Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacter-ium crenatum for improvement of(L)-arginine production[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3):495-502. [61] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedbackresistant N-acetyl-L-glutamate kinase(NAGK)increase Coryne-bacterium crenatum L-arginine production[J]. Amino Acids, 2012, 43(1):255-266. [62] Lv Y, Liao J, Wu Z, et al. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria[J]. Journal of Bacteriology, 2012, 194(3):742-743. |
[1] | 王绿阳, 康翠翠, 冯江银, 丁立人, 杭苏琴. 猪十二指肠组织灌流培养与静态培养比较[J]. 生物技术通报, 2021, 37(2): 246-252. |
[2] | 侯岚菲, 杨洪, 邓治, 代龙军, 门中华, 李德军. 橡胶树ADC1的克隆、表达及生物信息学分析[J]. 生物技术通报, 2018, 34(11): 111-119. |
[3] | 丁斐斐, 李长红, 陈炯, 张琪. 香鱼精氨酸酶II基因的cDNA克隆及其表达与鳗弧菌感染的相关性[J]. 生物技术通报, 2016, 32(2): 109-115. |
[4] | 马越, 宿玲恰, 吴丹, 吴敬. 重组精氨酸脱亚胺酶制备L-瓜氨酸的工艺条件优化[J]. 生物技术通报, 2015, 31(8): 180-185. |
[5] | 于长燕;郑秀;朱燕;孟庆艳;王梦晓;高强;. 肉葡萄球菌tat-gfp融合基因的构建与表达[J]. , 2011, 0(08): 203-207. |
[6] | 苏晓峰;陆国清;程红梅;. 精氨酸激酶蛋白及分子生物学的研究进展[J]. , 2011, 0(04): 26-30. |
[7] | 胡兵;黄超;李文静;邓柳红;肖苏生;张春发;. hGH-双精氨酸C肽人胰岛素原基因的克隆表达及纯化研究[J]. , 2009, 0(12): 96-101. |
[8] | 李思经;. 朝鲜公司转向生产氨基酸[J]. , 1991, 0(08): 24-25. |
[9] | . 细胞工程[J]. , 1990, 0(06): 52-58. |
[10] | 孙国凤;. 曲霉经基因操作提高了α淀粉酶活性[J]. , 1988, 0(09): 20-21. |
[11] | . 食品上的应用[J]. , 1986, 0(10): 92-101. |
[12] | . 基因工程[J]. , 1985, 0(09): 9-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||