[1] Specht JE.Soybean[M]// Smith S, Diers B, Specht J, et al. Yield Gains in Major US Field Crops, Madison Amerioan Society of Agrouomy, 2014:311-356 [2] Tyler BM.Phytophthora sojae:root rot pathogen of soybean and model oomycete[J]. Mol Plant Pathol, 2007, 8(1):1-8. [3] Whitham S, QI M, Innes R, et al.Molecular soybean-pathogen interactions[J]. Annu Rev Phytopathol, 2016, 54(19):1-26. [4] Kamoun S, Furzer O, Jones JD, et al.The Top 10 oomycete pathogens in molecular plant pathology[J]. Mol Plant Pathol, 2015, 16(4):413-434. [5] Kaufmann MJ, Gerdemann JW.Root and stem rot of soybean caused by Phytophthora sojae n. sp[J]. Phytopathology, 1957, 48(4):201-208. [6] Tyler B, Tripathy S, Zhang X, et al.Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science, 2006, 313(5791):1261-1266. [7] Wrather JA, Koenning SR.Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Journal of Nematology, 2006, 38(38):173-180. [8] Chamnanpunt J, Shan WX, Tyler BM.High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae[J]. Proc Natl Acad Sci USA, 2001, 98(25):14530-14535. [9] Fry WE, Goodwin SB.Re-emergence of potato and tomato late blight in the United States[J]. Plant Disease, 1997, 81(12):1349-1357. [10] Dorrance AE, Mcclure SA, Desilva A.Pathogenic diversity of Phytophthora sojae in ohio soybean fields[J]. Plant Disease, 2007, 87(2):139-146. [11] Tyler B.Molecular basis of recognition between phytophthora pathogens and their hosts[J]. Annu Rev Phytopathol, 2002, 40:137-167. [12] Jones J, Dangl J.The plant immune system[J]. Nature, 2006, 444(7117):323-329. [13] Wang Q, Han C, Ferrira AO, et al.Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. Plant Cell, 2011, 23(6):2064-2086. [14] Ma Z, Zhu L, Song T, et al.A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor[J]. Science, 2017, 355(6326):710-714. [15] Morris PF, Ward EWB.Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones[J]. Physiological & Mol Plant Pathol, 1992, 40(1):17-22. [16] Tyler BM, Wu M, Wang J, et al.Chemotactic preferences and strain variation in the response of Phytophthora sojae zoospores to host isoflavones[J]. Applied & Environmental Microbiology, 1996, 62(8):2811. [17] Zhang X, Zhai C, Hua C, et al.PsHint1, associated with the G-protein α subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae[J]. Mol Plant Pathol, 2016, 17(2):272-285. [18] Hua C, Wang Y, Zheng X, et al.A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones[J]. Eukaryotic Cell, 2008, 7(12):2133-2140. [19] Wang Y, Li A, Wang X, et al.GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae[J]. Eukaryotic Cell, 2010, 9(2):242-250. [20] Yang X, Zhao W, Hua C, et al.Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain[J]. Mol Microbiol, 2013, 88(2):382-394. [21] Deacon JW, Donaldson SP.Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora[J]. Mycological Research, 1993, 97(10):1153-1171. [22] Enkerli K, Mims CW, Hahn MG.Ultrastructure of compatible and incompatible interactions of soybean roots infected with the plant pathogenic oomycete Phytophthora sojae[J]. Canadian Journal of Botany, 1997, 75(9):1493-1508. [23] Morris PF, Bone E, Tyler BM.Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates[J]. Plant Physiology, 1998, 117(4):1171. [24] Schmitthenner AF.Problems and progress in control of Phytophth-ora root rot of soybean[J]. Plant Disease, 1985, 69(4):362-368. [25] Hahn MG.Microbial elicitors and their receptors in plants[J]. Annu Rev Phytopathol, 1996, 34(34):387. [26] Ricci P.Induction of the hypersensitive response and systemic acquired resistance by fungal proteins:The Case of Elicitins[M]. Springer US, 1997. [27] Keen NT, Yoshikawa M, Wang MC.Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f. sp. glycinea and other sources[J]. Plant Physiology, 1983, 71(3):466-471. [28] Waldmüller T, Cosio EG, Grisebach H, et al.Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea[J]. Planta, 1992, 188(4):498-505. [29] Sacks W, Nürnberger T, Hahlbrock K, et al.Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma[J]. Molecular & General Genetics Mgg, 1995, 246(1):45. [30] Séjalondelmas N, Mateos FV, Bottin A, et al.Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco[J]. Phytopathology, 1997, 87(9):899-909. [31] Henry, Thonart, Ongena. PAMPs, MAMPs, DAMPs and others:an update on the diversity of plant immunity elicitors[J]. Biotechnologie Agronomie Société Et Environnement, 2012, 16(2):257-268. [32] Hématy K, Cherk C, Somerville S.Host-pathogen warfare at the Plant Cell wall[J]. Curr Opin Plant Biol, 2009, 12(4):406-413. [33] Nürnberger T, Brunner F.Innate immunity in plants and animals:emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns[J]. Curr Opin Plant Biol, 2002, 5(4):318-324. [34] Ma Z, Song T, Zhu L, et al.A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP[J]. Plant Cell, 2015, 27(7):2057-2072. [35] Paulus J, Kourelis J, Van Der Hoorn R. Bodyguards:pathogen-derived decoys that protect virulence factors[J]. Trends Plant Sci, 2017, 22(5):355-357. [36] Jiang RHY, Tyler BM.Mechanisms and evolution of virulence in oomycetes[J]. Annu Rev Phytopathol, 2012, 50(1):295. [37] Jiang RH, Tripathy S, Govers F, et al.RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members[J]. Proc Natl Acad Sci USA, 2008, 105(12):4874-4879. [38] Dou D, Kale SD, Wang X, et al.RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery[J]. Plant Cell, 2008, 20(7):1930-1947. [39] Song T, Kale SD, Arredondo FD, et al.Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance[J]. Mol Plant Microbe Interact, 2013, 26(7):711-720. [40] Qutob D, Tedman-jones J, Dong S, et al. Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4(4):e5066. [41] Yin W, Dong S, Zhai L, et al.The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains[J]. Mol Plant Microbe Interact, 2013, 26(8):958-968. [42] Dong S, Yu D, Cui L, et al.Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean[J]. PLoS One, 2011, 6(7):e20172. [43] Dong S, Yin W, Kong G, et al.Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity[J]. PLoS Pathogens, 2011, 7(11):e1002353. [44] Kong G, Zhao Y, Jing M, et al.The Activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase Activity of Avr3b[J]. PLoS Pathog, 2015, 11(8):e1005139. [45] Dong S, Qutob D, Tedman-Jones J, et al.The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains[J]. PLoS One, 2009, 4(5):e5556. [46] Dou D, Kale SD, Liu T, et al.Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6[J]. Mol Plant Microbe Interact, 2010, 23(4):425-435. [47] Na R, Yu D, Chapman B, et al.Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus[J]. PLoS One, 2014, 9(2):e89738. [48] Liu T, Ye W, Ru Y, et al.Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses[J]. Plant Physiol, 2011, 155(1):490-501. [49] Shan W, Cao M, Leung D, et al.The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b[J]. Mol Plant Microbe Interact, 2004, 17(4):394-403. [50] Macgregor T, Bhattacharyya M, Tyler B, et al.Genetic and physical mapping of Avr1a in Phytophthora sojae[J]. Genetics, 2002, 160(3):949-959. [51] Dou D, Kale SD, Wang X, et al.Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b[J]. Plant Cell, 2008, 20(4):1118-1133. [52] Yang B, Wang Q, Jing M, et al.Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression[J]. New Phytol, 2017, 214(1):361-375. [53] Anderson R, Deb D, Fedkenheuer K, et al.Recent progress in RXLR effector research[J]. Mol Plant Microbe Interact, 2015, 28(10):1063-1072. [54] Anderson RG, Casady MS, Fee RA, et al.Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants[J]. The Plant Journal, 2012, 72(6):882-893. [55] Gordon S, Berry S, ST Martin S, et al.Genetic analysis of soybean plant introductions with resistance to Phytophthora sojae[J]. Phytopathology, 2007, 97(1):106-112. |