生物技术通报 ›› 2019, Vol. 35 ›› Issue (2): 182-191.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0404
姚琳通, 刘娅婷, 刘雅静, 陈真真
收稿日期:
2018-05-01
出版日期:
2019-02-26
发布日期:
2019-03-07
作者简介:
姚琳通,女,硕士研究生,研究方向:纳米材料;E-mail:yltcurie@163.com
基金资助:
YAO Lin-tong, LIU Ya-ting, LIU Ya-jing, CHEN Zhen-zhen
Received:
2018-05-01
Published:
2019-02-26
Online:
2019-03-07
摘要: 介孔二氧化硅纳米粒子(Mesoporous Silica Nanoparticles,MSNs)因其具有独特介孔结构、良好的生物相容性、较大的比表面积及明确的表面性质,在生物医学领域备受关注。基于介孔二氧化硅纳米粒子的药物递送系统已成为众多科研工作者研究的热点。讨论了介孔二氧化硅纳米粒子与多肽、抗体以及抗体片段、核酸适体、免疫治疗应用相结合后在肿瘤治疗领域的局限性和挑战。最后,对目前介孔二氧化硅药物输送体系在实际应用中存在的问题进行了分析,并对其未来的发展前景进行了展望。
姚琳通, 刘娅婷, 刘雅静, 陈真真. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2): 182-191.
YAO Lin-tong, LIU Ya-ting, LIU Ya-jing, CHEN Zhen-zhen. Research Progress on Mesoporous Silica in Cancer Therapy[J]. Biotechnology Bulletin, 2019, 35(2): 182-191.
[1] Ferrari M.Cancer nanotechnology:opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3):161-171. [2] Peer D, Karp JM, Hong S, et al.Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2(12):751-760. [3] Shi J, Votruba AR, Farokhzad OC, et al.Nanotechnology in drug delivery and tissue engineering:from discovery to applications[J]. Nano Letters, 2010, 10(9):3223-3230. [4] Swartz MA, Hirosue S, Hubbell JA. Engineering approaches to immunotherapy[J]. Science Translational Medicine, 2012, 4(148):148rv9. [5] Kearney CJ, Mooney DJ.Macroscale delivery systems for molecular and cellular payloads[J]. Nature Materials, 2013, 12(11):1004-1017. [6] Salkho NM, Turki RZ, Guessoum O, et al.Liposomes as a promising uultrasound-triggered drug delivery system in cancer treatment[J]. Current molecular medicine, 2017, 17(10):668-688. [7] Nikoofal-Sahlabadi S, Riahi MM, Sadri K, et al.Liposomal CpG-ODN:An in vitro and in vivo study on macrophage subtypes responses, biodistribution and subsequent therapeutic efficacy in mice models of cancers[J]. European Journal of Pharmaceutical Sciences, 2018, 119:159-170. [8] Yin X, Feng S, Chi Y, et al.Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma[J]. Drug Delivery, 2018, 25(1):900-908. [9] Liu L, He H, Liang R, et al.ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy[J]. Biomacromolecules, 2018, 19(6):2146-2155. [10] Rafael D, Gener P, Andrade F, et al.AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells[J]. Drug Delivery, 2018, 25(1):961-972. [11] Vrbata D, Uchman M.Preparation of lactic acid- and glucose-responsive poly(epsilon-caprolactone)-b-poly(ethylene oxide)block copolymer micelles using phenylboronic ester as a sensitive block linkage[J]. Nanoscale, 2018, 10(18):8428-8442. [12] Tsai CH, Tang YH, Chen HT, et al.A selective glucose sensor:the cooperative effect of monoboronic acid-modified poly(amid-oamine)-dendrimers[J]. Chemical Commun, 2018, 54(36):4577-4580. [13] Kim JW, Lee JJ, Choi JS, et al.Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery[J]. International Journal of Pharmaceutics, 2018, 544(1):39-45. [14] Kavyani S, Dadvar M, Modarress H, et al.A coarse grained molecular dynamics simulation study on the structural properties of carbon nanotube-dendrimer composites[J]. Soft Matter, 2018, 14(16) :3151-3163. [15] Liberman A, Mendez N, Trogler WC, et al.Synthesis and surface functionalization of silica nanoparticles for nanomedicine[J]. Surface Science Reports, 2014, 69(2-3):132-158. [16] Tang F, Li L, Chen D.Mesoporous silica nanoparticles:synthesis, biocompatibility and drug delivery[J]. Advanced Materials, 2012, 24(12):1504-1534. [17] Zhao D, Feng J, Huo Q, et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350):548-552. [18] Na HK, Kim MH, Park K, et al.Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores[J]. Small, 2012, 8(11):1752-1761. [19] Wu M, Meng Q, Chen Y, et al.Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy[J]. Advanced Materials, 2016, 28(10):1963-1969. [20] Roberts CM, Shahin SA, Wen W, et al.Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models[J]. Nanomedicine, 2017, 13(3):965-976. [21] Liu X, Yu D, Jin C, et al.A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment[J]. New J Chem, 2014, 38(10):4830-4836. [22] Ebabe Elle R, Rahmani S, Lauret C, et al.Functionalized mesoporous silica nanoparticle with antioxidants as a new carrier that generates lower oxidative stress impact on cells[J]. Molecular Pharmaceutics, 2016, 13(8):2647-2660. [23] Lee C-H, Lin T-S, Mou C-Y.Mesoporous materials for encapsulating enzymes[J]. Nanotoday, 2009, 4(2):165. [24] Li J, Wang H, Yang B, et al.Control-release microcapsule of famotidine loaded biomimetic synthesized mesoporous silica nanoparticles:Controlled release effect and enhanced stomach adhesion in vitro[J]. Materials Science & Engineering C, Materials for Biological Applications, 2016, 58:273-277. [25] Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials:inorganic, organic-inorganic hybrid and purely organic solids[J]. Advances in Colloid and Interface Science, 2013, 189-190:21-41. [26] Kwon S, Singh RK, Perez RA, et al.Silica-based mesoporous nanoparticles for controlled drug delivery[J]. Journal of Tissue Engineering, 2013, 4:2041731413503357. [27] Baek S, Singh RK, Khanal D, et al.Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles[J]. Nanoscale, 2015, 7(34):14191-14216. [28] Wang Y, Zhao Q, Han N, et al.Mesoporous silica nanoparticles in drug delivery and biomedical applications[J]. Nanomedicine, 2015, 11(2):313-327. [29] Vivero-Escoto JL, Slowing, II, Trewyn BG, et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery[J]. Small, 2010, 6(18):1952-1967. [30] Mal NK, Fujiwara M, Tanaka Y.Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature, 2003, 421(6921):350-353. [31] Lai CY, Trewyn BG, Jeftinija DM, et al.A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society, 2003, 125(15):4451-4459. [32] Inoue T, Cavanaugh PG, Steck PA, et al.Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials[J]. Journal of Cellular Physiology, 1993, 156(1):212-217. [33] Keer HN, Kozlowski JM, Tsai YC, et al.Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo[J]. The Journal of Urology, 1990, 143(2):381-385. [34] Ryschich E, Huszty G, Knaebel HP, et al.Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas[J]. European Journal of Cancer, 2004, 40(9):1418-1422. [35] Fang IJ, Slowing, II, Wu KC, et al. Ligand conformation dictates membrane and endosomal trafficking of arginine-glycine-aspartate(RGD)-functionalized mesoporous silica nanoparticles[J]. Chemistry, 2012, 18(25):7787-7792. [36] Cheng S-H, Lee C-H, Chen M-C, et al.Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy[J]. Journal of Materials Chemistry, 2010, 20(29):6149. [37] Palanikumar L, Choi ES, Cheon JY, et al.Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform[J]. Advanced Functional Materials, 2015, 25(6):957-965. [38] Palanikumar L, Kim HY, Oh JY, et al.Noncovalent surface locking of mesoporous silica nanoparticles for exceptionally high hydrophobic drug loading and enhanced colloidal stability[J]. Biomacromolecules, 2015, 16(9):2701-2714. [39] Kubitscheck U, Grunwald D, Hoekstra A, et al.Nuclear transport of single molecules:dwell times at the nuclear pore complex[J]. The Journal of Cell Biology, 2005, 168(2):233-243. [40] Pan L, He Q, Liu J, et al.Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(13):5722-5725. [41] Pan L, Liu J, He Q, et al.Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles[J]. Biomaterials, 2013, 34(11):2719-2730. [42] Thornton PD, Heise A.Highly specific dual enzyme-mediated payload release from peptide-coated silica particles[J]. Journal of the American Chemical Society, 2010, 132(6):2024-2028. [43] Egeblad M, Werb Z.New functions for the matrix metalloproteinases in cancer progression[J]. Nature Reviews cancer, 2002, 2(3):161-174. [44] Mok H, Veiseh O, Fang C, et al.pH-Sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells[J]. Molecular pharmaceutics, 2010, 7(6):1930-1939. [45] Zhao Z, Meng H, Wang N, et al.A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery[J]. Angewandte Chemie, 2013, 52(29):7487-7491. [46] Reshetnyak YK, Andreev OA, Lehnert U, et al.Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix[J]. Proc Natil Acad Sci USA, 2006, 103(17):6460-6465. [47] Yao L, Daniels J, Moshnikova A, et al.pHLIP peptide targets nanogold particles to tumors[J]. Proc Natil Acad Sci USA, 2013, 110(2):465-470. [48] Golijanin J, Amin A, Moshnikova A, et al.Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proc Natil Acad Sci USA, 2016, 113(42):11829-11834. [49] Martelli G, Zope HR, Capell MB, et al.Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles[J]. Chemical Commun, 2013, 49(85):9932-9934. [50] Needham D, Dewhirst MW.The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors[J]. Advanced Drug Delivery Reviews, 2001, 53(3):285-305. [51] Luo GF, Chen WH, Liu Y, et al.Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide[J]. Scientific Reports, 2014, 4:6064. [52] Cheng YJ, Zeng X, Cheng DB, et al.Functional mesoporous silica nanoparticles(MSNs)for highly controllable drug release and synergistic therapy[J]. Colloids and Surfaces B, Biointerfaces, 2016, 145:217-225. [53] Xiao D, Jia HZ, Ma N, et al.A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery[J]. Nanoscale, 2015, 7(22):10071-10077. [54] Durfee PN, Lin YS, Dunphy DR, et al.Mesoporous silica nanoparticle-supported lipid bilayers(Protocells)for active targeting and delivery to individual leukemia cells[J]. ACS Nano, 2016, 10(9):8325-8345. [55] Maloney DG, Grillo-Lopez AJ, White CA, et al.IDEC-C2B8(Rituximab)anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma[J]. Blood, 1997, 90(6):2188-2195. [56] Zhou S, Wu D, Yin X, et al.Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells[J]. Journal of Experimental & Clinical Cancer Research, 2017, 36(1):24. [57] Chen F, Hong H, Shi S, et al.Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy[J]. Scientific Reports, 2014, 4:5080. [58] Chen F, Nayak TR, Goel S, et al.In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles[J]. Molecular Pharmaceutics, 2014, 11(11):4007-4014. [59] Mandal T, Beck M, Kirsten N, et al.Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles[J]. Scientific Reports, 2018, 8(1):989. [60] Hicke BJ, Stephens AW, Gould T, et al.Tumor targeting by an aptamer[J]. Journal of nuclear medicine:official publication, Society of Nuclear Medicine, 2006, 47(4):668-678. [61] Babaei M, Abnous K, Taghdisi SM, et al.Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma[J]. Nanomedicine(Lond), 2017, 12(11):1261-1279. [62] Tang Y, Hu H, Zhang MG, et al.An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles[J]. Nanoscale, 2015, 7(14):6304-6310. [63] Hanafi-Bojd MY, Moosavian Kalat SA, Taghdisi SM, et al.MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells[J]. Drug Development and Industrial Pharmacy, 2018, 44(1):13-18. [64] Robey RW, To KK, Polgar O, et al.ABCG2:a perspective[J]. Advanced Drug Delivery Reviews, 2009, 61(1):3-13. [65] Sukowati CH, Rosso N, Pascut D, et al.Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma[J]. BMC Gastroenterology, 2012, 12:160. [66] Zhang X, Li F, Guo S, et al.Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells[J]. Biomaterials, 2014, 35(11):3650-3665. [67] He Q, Gao Y, Zhang L, et al.A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance[J]. Biomaterials, 2011, 32(30):7711-7720. [68] Yin Q, Shen J, Zhang Z, et al.Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor[J]. Advanced Drug Delivery Reviews, 2013, 65(13-14):1699-715. [69] Lee CH, Cheng SH, Huang IP, et al.Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics[J]. Angewandte Chemie, 2010, 49(44):8214-8219. [70] Wang X, Liu Y, Wang S, et al.CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer[J]. Applied Surface Science, 2015, 332:308-817. [71] Jia L, Li Z, Shen J, et al.Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance[J]. International Journal of Pharmaceutics, 2015, 489(1-2):318-330. [72] Xiong R, Soenen SJ, Braeckmans K, et al.Towards theranostic multicompartment microcapsules:in-situ diagnostics and laser-induced treatment[J]. Theranostics, 2013, 3(3):141-151. [73] Yang G, Gong H, Liu T, et al.Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer[J]. Biomaterials, 2015, 60:62-71. [74] Su J, Sun H, Meng Q, et al.Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes[J]. Theranostics, 2017, 7(3):523-537. [75] Tang XL, Jing F, Lin BL, et al.pH-responsive magnetic mesoporous silica-based nanoplatform for synergistic photodynamic therap/chemo-therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(17):15001-15011. [76] Kajihara M, Takakura K, Ohkusa T, et al.The impact of dendritic cell-tumor fusion cells on cancer vaccines-past progress and future strategies[J]. Immunotherapy, 2015, 7(10):1111-1122. [77] Noguchi M, Sasada T, Itoh K.Personalized peptide vaccination:a new approach for advanced cancer as therapeutic cancer vaccine[J]. Cancer Immunology, Immunotherapy:CII, 2013, 62(5):919-929. [78] Chiang CL, Coukos G, Kandalaft LE.Whole tumor antigen vaccines:where are we?[J]. Vaccines, 2015, 3(2):344-372. [79] Klippstein R, Pozo D.Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies[J]. Nanomedicine, 2010, 6(4):523-529. [80] Kupferschmidt N, Qazi KR, Kemi C, et al.Mesoporous silica particles potentiate antigen-specific T-cell responses[J]. Nanomedicine(Lond), 2014, 9(12):1835-1846. [81] Heidegger S, Gossl D, Schmidt A, et al.Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery[J]. Nanoscale, 2016, 8(2):938-948. [82] Gerlowski LE, Jain RK.Microvascular permeability of normal and neoplastic tissues[J]. Microvascular Research, 1986, 31(3):288-305. [83] Bertrand N, Wu J, Xu X, et al.Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J]. Advanced Drug Delivery Reviews, 2014, 66:2-25. [84] Maeda H.Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity[J]. Advanced Drug Delivery Reviews, 2015, 91:3-6. [85] Sakulkhu U, Maurizi L, Mahmoudi M, et al.Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats[J]. Nanoscale, 2014, 6(19):11439-11450. [86] Ritz S, Schottler S, Kotman N, et al.Protein corona of nanoparticles:distinct proteins regulate the cellular uptake[J]. Biomacromolecules, 2015, 16(4):1311-1321. [87] Salvati A, Pitek AS, Monopoli MP, et al.Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface[J]. Nature Nanotechnology, 2013, 8(2):137-143. [88] Yang G, Xu L, Chao Y, et al.Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J]. Nature Communications, 2017, 8(1):902. [89] Molino NM, Anderson AK, Nelson EL, et al.Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation[J]. ACS Nano, 2013, 7(11):9743-9752. [90] Wilson JT, Keller S, Manganiello MJ, et al.pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides[J]. ACS Nano, 2013, 7(5):3912-3925. [91] He X, Cao H, Wang H, et al.Inflammatory monocytes loading protease-sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti-metastasis therapy[J]. Nano Letters, 2017, 17(9):5546-5554. [92] Li SY, Cheng H, Cie BR, et al.cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy[J]. ACS Nano, 2017, 11(7):7006-7018. [93] Luk BT, Zhang L.Cell membrane-camouflaged nanoparticles for drug delivery[J]. Journal of Controlled Release, 2015, 220(Pt B):600-607. |
[1] | 张文君, 吴梦婷, 吕春艳, 王晴, 陈泳霖. 介孔二氧化硅在药物递送系统及其体内外研究进展[J]. 生物技术通报, 2019, 35(12): 159-168. |
[2] | 李建明,丁劲松. 基于多胺转运系统的抗肿瘤药物研究进展[J]. 生物技术通报, 2017, 33(5): 34-39. |
[3] | 周培杰,高维强,方煜翔. 一种嵌合型调控元件在肿瘤靶向基因治疗中的应用[J]. 生物技术通报, 2015, 31(10): 255-262. |
[4] | 李丹丹;孙维敏;丁克俭;. 聚乳酸羟基乙酸纳米微球在肿瘤药物递送中的应用[J]. , 2012, 0(02): 28-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||