生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 27-38.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1180
吴家劲1, 朱森林1, 周密2, 孙会增1
收稿日期:
2019-12-04
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
吴家劲,男,博士研究生,研究方向:奶牛营养与饲料科学;E-mail:wujj@zju.edu.cn
基金资助:
WU Jia-jin1, ZHU Sen-lin1, ZHOU Mi2, SUN Hui-zeng1
Received:
2019-12-04
Published:
2020-02-26
Online:
2020-02-23
摘要: 近年来在奶牛试验中,对瘤胃微生物的研究引起了人们越来越多的兴趣。这些研究的目的多是将微生物组成变化与日粮组成、宿主生产性能(如饲料效率,产奶量,乳脂等)、健康(如瘤胃酸中毒和亚急性酸中毒)以及环境(如甲烷排放)联系起来,另外还有一些研究则强调了微生物在多种反刍动物瘤胃发育中的作用。关于奶牛瘤胃微生物的大部分发现都是基于扩增子测序,可以揭示瘤胃微生物的分类组成,以及在不同处理条件下瘤胃菌群的变化。尽管新兴的宏基因组学和宏转录组学能够深入探索瘤胃微生物的功能,但在数据分析和解释方面也带来了更多的挑战,如目前大多数论文都严重依赖于相关性和推测分析。综述了奶牛瘤胃微生物研究的进展和局限,包括瘤胃微生物与产奶效率、甲烷排放以及瘤胃发育的关系,以及奶牛瘤胃微生物未来的研究趋势。
吴家劲, 朱森林, 周密, 孙会增. 奶牛瘤胃微生物研究进展和趋势[J]. 生物技术通报, 2020, 36(2): 27-38.
WU Jia-jin, ZHU Sen-lin, ZHOU Mi, SUN Hui-zeng. Research Progress and Trends on Rumen Microbiota in Dairy Cows[J]. Biotechnology Bulletin, 2020, 36(2): 27-38.
[1] Baumgard L, Collier R, Bauman D.A 100-year review:regulation of nutrient partitioning to support lactation[J]. Journal of Dairy Science, 2017, 100(12):10353-10366. [2] Bradford BJ, Yuan K, Ylioja C.Managing complexity:Dealing with systemic crosstalk in bovine physiology[J]. Journal of Dairy Science, 2016, 99(6):4983-4996. [3] Jami E, Mizrahi I.Composition and similarity of bovine rumen microbiota across individual animals[J]. PLoS One, 2012, 7(3):e33306. [4] Jami E, White BA, Mizrahi I.Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency[J]. PLoS One, 2014, 9(1):e85423. [5] Hungate RE.The rumen and its microbes[M]. Elsevier, 2013. [6] Malmuthuge N, Griebel P, Guan L.The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract[J]. Frontiers in Veterinary Science, 2015, 2:36. [7] Malmuthuge N.Understanding the gut microbiome of dairy calves:Opportunities to improve early-life gut health[J]. Journal of Dairy Science, 2017, 100(7):5996-6005. [8] Stewart RD, Auffret MD, Warr A, et al.Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8):953-961. [9] Pfeifer S.From next-generation resequencing reads to a high-quality variant data set[J]. Heredity, 2017, 118(2):111. [10] Costea PI, Zeller G, Sunagawa S, et al.Towards standards for human fecal sample processing in metagenomic studies[J]. Nature Biotechnology, 2017, 35(11):1069. [11] Balvočiūtė M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?[J]. BMC Genomics, 2017, 18(2):114. [12] Weiss S, Xu Z, Peddada S, et al.Normalization and microbial diffe-rential abundance strategies depend upon data characteristics[J]. Microbiome, 2017, 5(1):27. [13] Connor E.Invited review:improving feed efficiency in dairy production:challenges and possibilities[J]. Animal, 2015, 9(3):395-408. [14] Weimer PJ, Cox MS, Vieira de Paula TV, et al. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high-and low-efficiency Holstein cows[J]. Journal of Dairy Science, 2017, 100(9):7165-7182. [15] Arndt C, Powell JM, Aguerre M, et al.Feed conversion efficiency in dairy cows:Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens[J]. Journal of Dairy Science, 2015, 98(6):3938-3950. [16] VandeHaar M, Armentano L, Weigel K, et al. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency[J]. Journal of Dairy Science, 2016, 99(6):4941-4954. [17] Berry DP, Coffey M, Pryce J, et al.International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources[J]. Journal of Dairy Science, 2014, 97(6):3894-3905. [18] Rius A, Kittelmann S, Macdonald K, et al.Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture[J]. Journal of Dairy Science, 2012, 95(9):5024-5034. [19] France J, Dijkstra J.Volatile fatty acid production[J]. Quantitative Aspects of Ruminant Digestion and Metabolism, 2005, 2:157-175. [20] Clark J, Klusmeyer T, Cameron M.Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows[J]. Journal of Dairy Science, 1992, 75(8):2304-2323. [21] Guan L, Nkrumah JD, Basarab JA, et al.Linkage of microbial ecology to phenotype:correlation of rumen microbial ecology to cattle’s feed efficiency[J]. FEMS Microbiology Letters, 2008, 288(1):85-91. [22] Hernandez-Sanabria E, Goonewardene LA, Li M, et al.Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits[J]. Applied Environmental Microbiology, 2010, 76(19):6338-6350. [23] Hernandez-Sanabria E, Goonewardene LA, Wang Z, et al.Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle[J]. Applied Environmental Microbiology, 2012, 78(4):1203-1214. [24] Zhou M, Hernandez-Sanabria E.Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis[J]. Applied Environmental Microbiology, 2010, 76(12):3776-3786. [25] Li F, Li C, Guan L, et al.Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Microbiome, 2019, 7:92. [26] Carberry CA, Kenny DA, Han S, et al.Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle[J]. Applied Environmental Microbiology, 2012, 78(14):4949-4958. [27] Myer PR, Smith TP, Wells JE, et al.Rumen microbiome from steers differing in feed efficiency[J]. PLoS One, 2015, 10(6):e0129174. [28] Jewell KA, McCormick CA, Odt CL, et al. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J]. Applied and Environmental Microbiology, 2015, 81(14):4697-4710. [29] Xue M, Sun H, Liu J, et al.Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Environmental Microbiology, 2018, 84:19 e00970-18. [30] Shabat SKB, Sasson G, Doron-Faigenboim A, et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. The ISME Journal, 2016, 10(12):2958-2972. [31] Xue M, Sun H, Liu J, et al.Assessment of rumen bacteria in dairy cows with varied milk protein yield[J]. Journal of Dairy Science, 2019, 102(6):5031-5040. [32] Nocek J, Kautz W, Leedle J, et al.Direct-fed microbial supplementation on the performance of dairy cattle during the transition period[J]. Journal of Dairy Science, 2003, 86(1):331-335. [33] Lima FS, Oikonomou G, Lima SF, et al.Prepartum and postpartum rumen fluid microbiomes:characterization and correlation with production traits in dairy cows[J]. Applied and Environmental Microbiology, 2015, 81(4):1327-1337. [34] Derakhshani H, Tun HM, Cardoso FC, et al.Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J]. Frontiers in Microbiology, 2017, 7:2143. [35] Indugu N, Vecchiarelli B, Baker LD, et al.Comparison of rumen bacterial communities in dairy herds of different production[J]. BMC microbiology, 2017, 17(1):190. [36] Cunha CS, Veloso CM, Marcondes, MI, et al.Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate[J]. Systematic and Applied Microbiology, 2017, 40(8):492-499. [37] Pitta D, Indugu N, Vecchiarelli B, et al.Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows[J]. Journal of Dairy Science, 2018, 101(1):295-309. [38] Khan RU, Naz S, Dhama K, et al.Direct-fed microbial:beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health[J]. International Journal of Pharmacology, 2016, 12(3):220-231. [39] Weimer PJ.Redundancy, resilience, and host specificity of the ruminal microbiota:implications for engineering improved ruminal fermentations[J]. Frontiers in Microbiology, 2015, 10(6):296. [40] Bickhart D, Weimer P.Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows[J]. Journal of Dairy Science, 2017, 101(8):7680-7689. [41] Sun H, Wang D, Wang B, et al.Metabolomics of four biofluids from dairy cows:potential biomarkers for milk production and quality[J]. Journal of Proteome Research, 2015, 14(2):1287-1298. [42] Zhang J, Shi H, Wang Y, et al.Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers[J]. Frontiers in Microbiology, 2017, 8:2206. [43] De Mulder T, Peiren N, Vandaele L, et al.Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers[J]. Livestock Science, 2018, 207:38-44. [44] Knapp J, Laur G, Vadas P, et al.Invited review:Enteric methane in dairy cattle production:Quantifying the opportunities and impact of reducing emissions[J]. Journal of Dairy Science, 2014, 97(6):3231-3261. [45] Benchaar C, Hassanat F, Gervais R, et al.Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production[J]. Journal of Dairy Science, 2013, 96(4):2413-2427. [46] Hassanat F, Gervais R, Julien C, et al.Replacing alfalfa silage with corn silage in dairy cow diets:Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production[J]. Journal of Dairy Science, 2013, 96(7):4553-4567. [47] Stocker TF, Qin D, Plattner GK, et al.Climate change 2013:The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2014. [48] Bulumulla A, Zhou M, Guan L.Achieving sustainable production of cow’s milk[M]. 3rded. Alberta:Burleigh Dodds Science Publishing, 2017. [49] Ding X, Long R, Zhang Q, et al.Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil[J]. Tropical Animal Health and Production, 2012, 44(7):1541-1545. [50] Hristov A, Callaway T, Lee C, et al.Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid[J]. Journal of Animal Science, 2012, 90(12):4449-4457. [51] King EE, Smith RP, St-Pierre B, et al.Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen[J]. Applied Environmental Microbiology, 2011, 77(16):5682-5687. [52] Jouany J, Demeyer D, Grain J.Effect of defaunating the rumen[J]. Animal Feed Science and Technology, 1988, 21(2-4):229-265. [53] Morgavi D, Jouany JP, Martin C.Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep[J]. Australian Journal of Experimental Agriculture, 2008, 48(2):69-72. [54] Mosoni P, Martin C, Forano E, et al.Long-term defaunation incre-ases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep[J]. Journal of Animal Science, 2011, 89(3):783-791. [55] Beauchemin KA, McGinn SM. Reducing methane in dairy and beef cattle operations:what is feasible[J]. Prairie Soil Crop, 2008, 1:17-21. [56] Danielsson R, Schnürer A, Arthurson V, et al.Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage[J]. Applied Environmental Microbiology, 2012, 78(17):6172-6179. [57] Shi W, Moon CD, Leahy SC, et al.Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome[J]. Genome Research, 2014, 24(9):1517-1525. [58] Zhou M, Chung YH, Beauchemin K, et al.Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive[J]. Journal of Applied Microbiology, 2011, 111(5):1148-1158. [59] Danielsson R, Dicksved J, Sun L, et al.Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure[J]. Frontiers in Microbiology, 2017, 8:226. [60] Wallace RJ, Sasson G, Garnsworthy PC, et al.A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[J]. Science Advances, 2019, 5:78391. [61] Chung YH, Zhou M, Holtshausen L, et al.A fibrolytic enzyme additive for lactating Holstein cow diets:Ruminal fermentation, rumen microbial populations, and enteric methane emissions[J]. Journal of Dairy Science, 2012, 95(3):1419-1427. [62] Duthie CA, Troy SM, Hyslop JJ, et al.The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle[J]. Animal, 2018, 12(2):280-287. [63] Haisan J, Sun Y, Guan L, et al.The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation[J]. Journal of Dairy Science, 2014, 97(5):3110-3119. [64] Reynolds CK, Humphries DJ, Kirton P, et al.Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows[J]. Journal of Dairy Science, 2014, 97(6):3777-3789. [65] Duval S, Kindermann M.Use of nitrooxy organic molecules in feed for reducing enteric methane emissions in ruminants, and/or to improve ruminant performance[J]. International Patent Application, 2012, 84629:A1. [66] Zhou M, Hünerberg M, Guan L, et al.Air-dried brown seaweed, ascophyllum nodosum, alters the rumen microbiome in a manner that changes rumen fermentation profiles and lowers the prevalence of foodborne pathogens[J]. Applied and Environmental Science, 2018, 3:17-18. [67] Zhou M, Chen Y, Griebel PJ.Methanogen prevalence throughout the gastrointestinal tract of pre-weaned dairy calves[J]. Gut Microbes, 2014, 5(5):628-638. [68] Yáñez-Ruiz DR, Abecia L, Newbold CJ.Manipulating rumen microbiome and fermentation through interventions during early life:a review[J]. Frontiers in Microbiology, 2015, 6:1133. [69] Li F, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle[J]. Applied Environmental Microbiology, 2017, 83(9). pii:e00061-00017. [70] Jami E, Israel A, Kotser A, et al.Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7(6):1069-1079. [71] Rey M, Enjalbert F, Combes S, et al.Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential[J]. Journal of Applied Microbiology, 2014, 116(2):245-257. [72] Li R, Connor EE, Li C, et al.Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools[J]. Environmental Microbiology, 2012, 14(1):129-139. [73] Malmuthuge N, Griebel PJ.Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves[J]. Applied Environmental Microbiology, 2014, 80(6):2021-2028. [74] Langille MG, Zaneveld J, Caporaso JG, et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821. [75] Aβhauer KP, Wemheuer B, Daniel R, et al.Tax4Fun:predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17):2882-2884. [76] Douglas GM, Maffei VJ, Zaneveld J, et al.Langille PICRUSt2:An improved and extensible approach for metagenome inference[J]. BioRxiv, 2019, 67:2295. [77] Malmuthuge N, Guan L.Gut microbiome and omics:a new definition to ruminant production and health[J]. Animal Frontiers, 2016, 6(2):8-12. [78] Dill-McFarland KA, Breaker JD, Suen G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation[J]. Scientific Reports, 2017, 7:40864. [79] Abecia L, Martín-García A, Martínez G, et al.Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning[J]. Journal of Animal Science, 2013, 91(10):4832-4840. [80] Abecia L, Ramos-Morales E, Martínez-Fernandez G, et al.Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids[J]. Animal Production Science, 2014, 54(9):1449-1454. [81] Abecia L, Jiménez E, Martínez-Fernandez G, et al.Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats[J]. PLoS One, 2017, 12(8):e0182235. [82] Chakravorty S, Helb D, Burday M, et al.A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. Journal of Microbiological Methods, 2007, 69(2):330-339. [83] Frank JA, Reich CI, Sharma S, et al.Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J]. Applied Environmental Microbiology, 2008, 74(8):2461-2470. [84] Jovel J, Patterson J, Wang W, et al.Characterization of the gut microbiome using 16S or shotgun metagenomics[J]. Frontiers in Microbiology, 2016, 7:459. [85] Baldwin R, McLeod K, Klotz J, et al. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87:55-65. [86] Connor EE, Baldwin RL, Li CJ, et al.Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth[J]. Functional & Integrative Genomics, 2013, 13(1):133-142. [87] Connor E, Baldwin R, Walker M, et al.Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-αidentified as putative mediators of calf rumen epithelial tissue development and function during weaning[J]. Journal of Dairy Science, 2014, 97(7):4193-4207. [88] Liang G, Malmuthuge N, McFadden TB, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J]. PLoS One, 2014, 9(3):e92592. [89] Naeem A, Drackley JK, Lanier JS, et al.Ruminal epithelium transcriptome dynamics in response to plane of nutrition and age in young Holstein calves[J]. Functional & Integrative Genomics, 2014, 14(1):261-273. [90] Malmuthuge N, Liang G, Guan L.Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J]. Genome Biology, 2019, 20:172. [91] Sommer F, Bäckhed F.The gut microbiota—masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4):227-238. [92] Malmuthuge N.Role of commensal microbiota in neonatal calf gut development[D]. Edmonton:University of Alberta, 2016. [93] Seshadri R, Leahy SC, Attwood GT, et al.Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection[J]. Nature Biotechnology, 2018, 36(4):359-367. [94] Moraïs S, Mizrahi I.The road not taken:the rumen microbiome, functional groups, and community states[J]. Trends in Microbiology, 2019, 27(6):538-549. |
[1] | 李宇航, 王兴平, 杨箭, 罗仍卓么, 任倩倩, 魏大为, 马云. miR-665在奶牛乳腺上皮细胞炎症中的表达及功能分析[J]. 生物技术通报, 2022, 38(5): 159-168. |
[2] | 王晋鹏, 罗仍卓么, 王兴平, 杨箭, 贾立, 马云, 魏大为. 奶牛乳腺炎治疗及抗炎分子机制的研究进展[J]. 生物技术通报, 2021, 37(12): 212-219. |
[3] | 张萌, 罗芳, 王敏, 武彦泽, 王俊奎, 和东迁, 陈丽尧, 陶金忠. 奶牛分娩后早期血浆代谢物变化研究[J]. 生物技术通报, 2020, 36(6): 191-199. |
[4] | 胡启超, 罗仍卓么, 魏大为, 杨箭, 贾立, 王兴平, 马云. 固有免疫相关编码基因在奶牛乳腺炎调节中的研究进展[J]. 生物技术通报, 2020, 36(12): 239-246. |
[5] | 张萌, 刘国林, 李向龙, 陈永宏, 白玲荣, 罗芳, 李亚超, 陶金忠. 围产前期添加山楂和黄芪混合物对奶牛血浆代谢组的影响[J]. 生物技术通报, 2019, 35(8): 127-137. |
[6] | 明鹏飞, 黄莹莹, 董妍丽, 聂星灿, 冯士彬, 王希春, 程建波, 李锦春, 吴金节, 李玉. LKB1-AMPKα-SIRT1信号通路在奶牛脂肪组织脂代谢中的调控作用[J]. 生物技术通报, 2019, 35(2): 176-181. |
[7] | 龚俞, 杨永强, 焦仁刚, 惠嫣婷, 刘若余. 牛JAK2基因启动子区多态及生物信息学研究[J]. 生物技术通报, 2013, 0(6): 104-109. |
[8] | 孙伟, 巴特尔, 郭继彤, 李荣凤, 王建国, 李明, 胡树香, 王春生, 李喜和. 奶牛体细胞核移植胚胎产业化生产条件优化[J]. 生物技术通报, 2013, 0(2): 86-92. |
[9] | 薛仰全, 余四九, 孙俊峰, 倪兴军. 酒泉地区奶牛超数排卵技术应用效果[J]. 生物技术通报, 2013, 0(12): 94-98. |
[10] | 王仁杰;刘墨祥;. 有机化合物生物催化研究进展[J]. , 2012, 0(10): 41-46. |
[11] | 张婧敏;陈宏;张春雷;杜毓;石秀英;房兴堂;. 奶牛乳房炎抗性候选基因的研究进展[J]. , 2010, 0(05): 43-46. |
[12] | 李喜艳;王加启;魏宏阳;卜登攀;胡菡;周凌云;. MTT比色法检测赖氨酸、蛋氨酸对体外培养的奶牛乳腺上皮细胞增殖的影响[J]. , 2010, 0(03): 143-148. |
[13] | 邢小勇;王权;胡永浩;陈永军;蒋蔚;安立刚;. 进口奶牛犬新孢子虫病血清学抗体及流产胎儿病原分子生物学检测[J]. , 2009, 0(04): 103-106. |
[14] | 李彦臻;刘畅;杨利国;. 奶牛Y精子膜蛋白的提取与分析[J]. , 2008, 0(S1): 258-263. |
[15] | 李楠;王秀利;崔玉东;甘文平;张洪涛;. 流式细胞仪原理及其在奶牛性别控制上的应用[J]. , 2007, 0(05): 49-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||