生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 180-187.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0400
收稿日期:
2020-04-10
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
陈鹏,男,博士,助理研究员,研究方向:中药分子药理学;E-mail: 基金资助:
Received:
2020-04-10
Published:
2020-11-26
Online:
2020-11-20
摘要:
来源于中药等自然资源的活性天然产物是药物的重要来源,筛选确定活性天然产物的蛋白靶点是明确其药理,毒理和成药的重要环节。目前传统的靶点筛选方法是基于分子标记示踪完成的,周期长且改变了天然产物本身的分子结构和药理作用,具有很大的弊端。新型冠状病毒引发的疫情(Coronavirus disease 2019,COVID-19)启示我们,快速的揭示药物的作用靶点对明确药物的药理和推广使用具有重要价值。近年来,结合蛋白质理化性质与蛋白质组学的非标记天然产物药理靶点的快速筛选技术日趋成熟。通过实例对目前主流的活性天然产物蛋白靶点的非标记筛选策略进行整理和总结,以期为该领域工作者提供前瞻性参考。
陈鹏. 活性天然产物蛋白靶点的快速筛选策略[J]. 生物技术通报, 2020, 36(11): 180-187.
CHEN Peng. Rapid Screening Strategy for Target Identification of Bioactive Natural Products[J]. Biotechnology Bulletin, 2020, 36(11): 180-187.
[1] | Challinor VL, Bode HB. Bioactive natural products from novel microbial sources[J]. Annals of the Newyork Academy of Sciences, 2015,1354:82-97. |
[2] |
Tian Y, Li YL, Zhao FC. Bioactive natural products from animal associated-microbes[J]. Mini-reviews in Medicinal Chemistry, 2017,17(17):1588-1601.
doi: 10.2174/1389557516666161024144014 URL pmid: 27781963 |
[3] | Fleming A. The discovery of penicillin[J]. British Medical Journal, 1944,2(4916):792. |
[4] | Vane JR, Flower RJ, Botting RM. History of aspirin and its mechanism of action[J]. Stroke, 1990,21(12):12-23. |
[5] |
Riaz M, Asghar A, Rashid R, et al. Treasures hunt in old mines:terminalia chebula-based traditional herbal medicinal products[J]. Natural Products Journal, 2015,5(4):252-267.
doi: 10.2174/2210315505666150930225815 URL |
[6] |
Tu YY. The discovery of artemisinin(qinghaosu)and gifts from Chinese medicin[J]. Nat Med, 2011,17(10):1217-1220.
doi: 10.1038/nm.2471 URL pmid: 21989013 |
[7] |
Hu J, Fang J, Dong Y, et al. Arsenic in cancer therapy[J]. Anticancer Drugs, 2005,16(2):119-127.
doi: 10.1097/00001813-200502000-00002 URL pmid: 15655408 |
[8] | Gassel M, Cramer J, Kern C, et al. Lessons learned from target-based lead discovery[M], New York:John Wiley Sons, 2009. |
[9] | Ahmad S. Natural Product-based drug discovery[M], New York:John Wiley Sons, 2015. |
[10] |
Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs:how many targets and how many drugs?[J]. Molecular Pharmacol, 2018,93(4):251-258.
doi: 10.1124/mol.117.111062 URL |
[11] |
Purcell RH, Hall RA. Adhesion G protein-coupled receptors as drug targets[J]. Annual Review of Pharmacology and Toxicology, 2018,58:429-449.
doi: 10.1146/annurev-pharmtox-010617-052933 URL pmid: 28968187 |
[12] | 李玉斌, 吕超, 张卫东. 非标记的天然产物靶点识别和确证方法及应用[J]. 药学学报, 2019,54(1):98-104. |
Li YB, Lv C, Zhang WD. Application of methods on target identification and validation of label-free natural products[J]. Acta Pharmaceutica Sinica, 2019,54(1):98-104. | |
[13] |
Lee JA, Berg EL. Neoclassic drug discovery:the case for lead generation using phenotypic and functional approaches[J]. Journal of Biomolecular Screening, 2013,18(10):1143-1155.
doi: 10.1177/1087057113506118 URL pmid: 24080259 |
[14] |
Li ZC, Huang MH, Zhong WQ, et al. Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features[J]. Bioinformatics, 2016,32(7):1057-1064.
URL pmid: 26614126 |
[15] |
肖斌, 王耘. 中药功能靶点的研究[J]. 中西医结合学报, 2010,8(12):1190-1194.
pmid: 21144463 |
Xiao B, Wang Y. Functional targets of Chinese herbal medicine[J]. Journal of Chinese Integrative Medicine, 2010,8(12):1190-1194.
URL pmid: 21144463 |
|
[16] | 曾克武, 廖理曦, 万彦军, 等. 基于靶点“钩钓”策略的肉苁蓉苯乙醇苷药理靶点鉴定及功效解析[J]. 中草药. 2018,1:173-178. |
Zeng KW, Liao LX, Wang YJ, et al. Pharmacological targets identification and efficacy analysis of phenylethanoid glycosides from Cistanches Herba based on “target fishing” strategy[J]. Chinese Traditional and Herbal Drugs, 2018,49(1):173-178. | |
[17] | Liao LX, Song XM, Wang LC, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy[J]. PNAS, 2017,114(29):5986-5994. |
[18] | Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment[J]. Pharmacol Research, 2020,155:104743. |
[19] |
Titov DV, Liu JO. Identification and validation of protein targets of bioactive small molecules[J]. Bioorganic & Medicinal Chemistry, 2012,20(6):1902-1909.
doi: 10.1016/j.bmc.2011.11.070 URL pmid: 22226983 |
[20] |
Saxena C. Identification of protein binding partners of small molecules using label-free methods[J]. Expert Opinion Drug Discovery, 2016,11(10):1017-1025.
doi: 10.1080/17460441.2016.1227316 URL |
[21] | Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products[J]. Natural Product Reports, 2016,33(5):733-736. |
[22] | Bantscheff M. Mass spectrometry-based chemoproteomic approaches[M], Switzerland:Springer Nature, 2012. |
[23] | 索建兰. 紫外吸收光谱法测定细辛中甲基丁香酚[J]. 中国医药指南, 2011,31:287-288. |
Suo JL. Determination of methyl eugenol in Asarum by UV absorption spectrometry[J]. Zhong Guo Yi Yao Zhi Nan. 2011,31:287-288. | |
[24] | 华嘉菊. 紫外分光光度法在中国药典1990年版(二部)标准中的应用[J]. 中国药学杂志, 1992,27(11):689-691. |
Hua JJ. Application of UV spectrophotometry in the Chinese pharmacopoeia 1990 edition(Part 2)[J]. Chinese Pharmaceutical Journal. 1992,27(11):689-691. | |
[25] |
Santofimia-Castaño P, Salido GM, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca2+ concentration determinations[J]. Cytotechnology, 2016,68(4):1369-1380.
doi: 10.1007/s10616-015-9898-1 URL pmid: 26091617 |
[26] | Su D, Cheng Y, Liu M, et al. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro[J]. PLoS One, 2013,8(1):54505. |
[27] | Wang J, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum[J]. Nature Communication, 2015,6:10111. |
[28] | Park H, Ha J, Park SB. Label-free target identification in drug discovery via phenotypic screening[J]. Current Opinion Chemical Biology, 2019,50:66-72. |
[29] |
West GM, Tucker CL, Xu T, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements[J]. PNAS, 2010,107(20):9078-9082.
doi: 10.1073/pnas.1000148107 URL pmid: 20439767 |
[30] |
Geer Wallace MA, Kwon DY, Weitzel DH, et al. Discovery of manassantin a protein targets using large-scale protein folding and stability measurements[J]. Journal of Proteome Research, 2016,15(8):2688-2696.
doi: 10.1021/acs.jproteome.6b00237 URL pmid: 27322910 |
[31] |
Roberts JH, Liu F, Karnuta JM, et al. Discovery of age-related protein folding stability differences in the mouse brain proteome[J]. Journal of Proteome Research, 2016,15(12):4731-4741.
doi: 10.1021/acs.jproteome.6b00927 URL pmid: 27806573 |
[32] |
Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability(DARTS)[J]. PNAS, 2009,106(51):21984-21989.
doi: 10.1073/pnas.0910040106 URL pmid: 19995983 |
[33] |
Robinson TJ, Pai M, Liu JC, et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells:interaction with IQ motif-containing factors[J]. Cell Cycle, 2013,12(18):3013-3024.
URL pmid: 23974104 |
[34] | Gong F, Peng X, Sang Y, et al. Dichloroacetate induces protective autophagy in LoVo cells:involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling[J]. Cell Death Disease, 2013,4(11):913. |
[35] | Cassiano C, Esposito R, Tosco A, et al. Chemical proteomics-guided identification of a novel biological target of the bioactive neolignan magnolol[J]. Frontier in Chemistry, 2019,7:53. |
[36] | Pace CN, McGrath T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation[J]. Journal of Biological Chemistry, 1980,255(9):3862-3865. |
[37] |
Vedadi M, Niesen F, Allali-Hassani A, et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination[J]. PNAS, 103(43):15835-15840.
doi: 10.1073/pnas.0605224103 URL pmid: 17035505 |
[38] | Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay[J]. Current Protocols in Protein Science, 2015,79(1):1-14. |
[39] | Ikuko N, Makoto M, Makoto K, et al. Identification of a small compound targeting PKM2-Regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA[J], Cell Chemical Biology, 2020,72(2):186-196. |
[40] |
Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013,341(6141):84-87.
doi: 10.1126/science.1233606 URL pmid: 23828940 |
[41] |
Park H, Ha J, Koo JY, et al. Label-free target identification using in-gel fluorescence difference via thermal stability shift[J]. Chemical Science, 2017,8(2):1127-1133.
doi: 10.1039/c6sc03238a URL pmid: 28451252 |
[42] |
Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome[J]. Science, 2014,346(6205):1255784.
doi: 10.1126/science.1255784 URL pmid: 25278616 |
[43] |
Huber KV, Olek KM, Müller AC, et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling[J]. Nature Methods, 2015,12(11):1055-1057.
doi: 10.1038/nmeth.3590 URL pmid: 26389571 |
[44] |
Becher I, Werner T, Doce C, et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat[J]. Nature Chemical Biology, 2016,12:908-910.
doi: 10.1038/nchembio.2185 URL pmid: 27669419 |
[45] |
Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry[J]. Nature Protocol, 2015,10(10):1567-1593.
doi: 10.1038/nprot.2015.101 URL |
[46] |
Ball KA, Webb KJ, Coleman SJ, et al. An isothermal shift assay for proteome scale drug-target identification[J]. Communication Biology, 2020,3(1):75.
doi: 10.1038/s42003-020-0795-6 URL |
[47] |
Bathula C, Tripathi S, Srinivasan R, et al. Synjournal of novel 5-arylidenethiazolidinones with apoptotic properties via a three component reaction using piperidine as a bifunctional reagent[J]. Organic & Biomolecular Chemistry, 14(34):8053-8063.
URL pmid: 27396309 |
[48] |
Hati S, Tripathy S, Dutta PK, et al. Spiro[pyrrolidine-3, 3'-oxindole]as potent anti-breast cancer compounds:Their design, synjournal, biological evaluation and cellular target identification[J]. Scientific Reports, 2016,6:32213.
doi: 10.1038/srep32213 URL pmid: 27573798 |
[49] |
Cong L, Ran FA, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223 URL |
[50] |
Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast[J]. Nature Review Genetics, 2007,8(6):437-449.
doi: 10.1038/nrg2085 URL pmid: 17510664 |
[51] | Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification[J]. Nature Product Reports, 2016,33(5):719-730. |
[52] |
Mali P, Yang L, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033 URL pmid: 23287722 |
[53] |
Moore JD. The impact of CRISPR-Cas9 on target identification and validation[J]. Drug Discovery Today, 2015,20(4):450-457.
doi: 10.1016/j.drudis.2014.12.016 URL pmid: 25572406 |
[54] |
Kim DH, Lee J, Kim KN, et al. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio)heptanomide, a novel histone deacetylase inhibitor[J]. Biochemical and Biophysical Research Communications, 2007,356(1):233-238.
doi: 10.1016/j.bbrc.2007.02.126 URL pmid: 17353008 |
[55] |
Cho YS, Kwon HJ. Control of autophagy with small molecules[J]. Archives of Pharmacal Research, 2010,33(12):1881-1889.
doi: 10.1007/s12272-010-1201-6 URL pmid: 21191751 |
[56] | Mele L, Paino F, Papaccio F, et al. A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo[J]. Cell Death & Disease, 2018,9(5):1-12. |
[57] |
Titov DV, Gilman B, He QL, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide[J]. Nature Chemical Biology, 2011,7(3):182-188.
doi: 10.1038/nchembio.522 URL pmid: 21278739 |
[58] | Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century:innovations for novel drug discovery[J]. International Journal of Molecular Science, 2018,19(6):1578. |
[59] |
Kumari P, Nath A, Chaube R. Identification of human drug targets using machine-learning algorithms[J]. Computers in Biology and Medicine, 2015,56:175-181.
doi: 10.1016/j.compbiomed.2014.11.008 URL pmid: 25437231 |
[60] |
Tian C, Sun R, Liu K, et al. Multiplexed thiol reactivity profiling for target discovery of electrophilic natural products[J]. Cell Chemical Biology, 2017,24(11):1416-1427.
doi: 10.1016/j.chembiol.2017.08.022 URL pmid: 28988947 |
[61] |
Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis[J]. PNAS, 2018,115(26):5896-5905.
doi: 10.1073/pnas.1802438115 URL |
[62] |
Zhang HN, Yang L, Ling JY, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic[J]. PNAS, 2015,112(49):15084-15089.
doi: 10.1073/pnas.1521316112 URL pmid: 26598702 |
[63] | Lu Y, Zhang Y, Li L, et al. TAB1:a target of triptolide in macrophages[J]. Chemical Biology, 2014,21(2):246-256. |
[64] |
Olaru A, Bala C, Jaffrezic-Renault N, et al. Surface plasmon resonance(SPR)biosensors in pharmaceutical analysis[J]. Critical Reviews in Analytical Chemistry, 2015,45(2):97-105.
doi: 10.1080/10408347.2014.881250 URL pmid: 25558771 |
[65] | 李翔, 吴磊宏, 范骁辉, 等. 复方丹参方主要活性成分网络药理学研究[J]. 中国中药杂志, 2011,21:2911-2915. |
Li X, Wu LH, Fan XH, et al. Network pharmacology study on major active compounds of Fufang Danshen formula[J]. China Journal of Chinese Materia Medica, 2011,21:2911-2915. | |
[66] |
Hopkins AL. Network pharmacology:the next paradigm in drug discovery[J]. Nature Chemical Biology, 2008,4(11):682-690.
doi: 10.1038/nchembio.118 URL pmid: 18936753 |
[67] |
Tao WY, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease[J]. Journal of Ethnopharmacol, 2013,145(1):1-10.
doi: 10.1016/j.jep.2012.09.051 URL |
[68] | 王哲义, 孙怿泽, 曲稔栋, 等. 基于网络药理学的麻杏石甘汤治疗新型冠状病毒肺炎(COVID-19)作用机制[J]. 中草药, 2020,51(8):1996-2003. |
Wang ZY, Sun YZ, Qu RD, et al. Network pharmacological study on mechanism of Maxing Shigan Decoction in treatment of coronavirus disease 2019(COVID-19)[J]. Chinese Traditional and Herbal Drugs, 2020,51(8):1996-2003. | |
[69] | 李思聪, 冯祥, 毕磊, 等. 新型冠状病毒肺炎诊疗方案中成药选用分析与药理研究进展[J]. 中药材, 2020,3:764-771. |
Li SC, Feng X, Bi L, et al. Selection analysis and pharmacological research progress of Chinese patent medicines in diagnosis and treatment of novel coronalvirus pheumonia[J]. Journal of Chinese Mecicinal Materials, 2020,3:764-771. | |
[70] | 凌晓颖, 陶嘉磊, 孙逊, 等. 基于网络药理学的连花清瘟方抗冠状病毒的物质基础及机制探讨[J]. 中草药, 2020,51(7):1723-1730. |
Ling XY, Tao JL, Sun X. Exploring material basis and mechanism of Lianhua Qingwen Prescription against coronavirus based on network pharmacology[J]. Journal of Chinese Mecicinal Materials, 2020,51(7):1723-1730. |
[1] | 周闪闪, 黄远龙, 黄建忠, 李善仁. 溶杆菌中活性天然产物的研究进展[J]. 生物技术通报, 2023, 39(10): 41-49. |
[2] | 刘明;赵琦;李亚男;胡文祥;. 细胞分子生物学技术在靶向药物筛选中的应用[J]. , 2009, 0(06): 62-66. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 860
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||