生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 12-20.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0422
翟楠鑫1(), 迟会1, 夏玥琳1, 刘彩月2, 裴新梧2(), 袁潜华1()
收稿日期:
2020-04-14
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
翟楠鑫,女,硕士研究生,研究方向:植物生物技术与种质创新;E-mail:基金资助:
ZHAI Nan-xin1(), CHI Hui1, XIA Yue-lin1, LIU Cai-yue2, PEI Xin-wu2(), YUAN Qian-hua1()
Received:
2020-04-14
Published:
2020-12-26
Online:
2020-12-22
摘要:
山栏稻是海南独有的地方旱稻,具有丰富的抗旱基因资源。本研究以海南山栏稻品种白沙糯为材料,利用转录组测序技术研究在模拟干旱胁迫后其转录组水平的变化。主要结果如下:山栏稻白沙糯干旱胁迫后有2 791个基因差异表达,差异表达基因中有184个转录因子在干旱胁迫后显著上调,包含了Znf、AP2/ERF、MYB、NAC、bZIP等抗旱转录因子,其中Znf家族转录因子所占数量最多。表达分析显示一些未注释的基因,如Os01g0910800随着胁迫时间的延长,表达水平逐渐上升且倍数明显。该研究获得的转录组数据和数字基因表达谱,为山栏稻抗旱机理的研究提供了信息资源,并为进一步解析山栏稻的抗旱机理奠定 基础。
翟楠鑫, 迟会, 夏玥琳, 刘彩月, 裴新梧, 袁潜华. 海南山栏稻抗旱基因转录组分析[J]. 生物技术通报, 2020, 36(12): 12-20.
ZHAI Nan-xin, CHI Hui, XIA Yue-lin, LIU Cai-yue, PEI Xin-wu, YUAN Qian-hua. Transcriptome Analysis of Drought-resistant Genes in Hainan Shanlan Upland Rice[J]. Biotechnology Bulletin, 2020, 36(12): 12-20.
Gene_ID /Name | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
OsLEA3-2 | CCAAGAACAAGCTGGGCGAG | CTTGAACTCCGTCGCCTTCT |
RAB21 | GCTCCAGCTCAAGCTCGTC | CATGGCATGCTGCTGCTC |
Os09g0351700 | TCTCGAACAGCAACCTGCAT | GGATGGAATTGTCCCGCTCA |
Os07g0658600 | GGGTTCGACACGTGCTACA | GGTGTGGATCACCACGTTCT |
Os02g0693700 | GTTCTACGAGCCTCTCACGG | CTGGTTGACGAGGCCAATCT |
Os11g0115100 | TCAGGAACCTCAACATGGGC | CTTGGAGCAGTCGACGGAG |
Os07g0251900 | CTTCGCTCGGGAACCTAACA | TGAGGTAGAGTGACCGGAGG |
Os01g0910800 | TGGCGCAGTACTACTCGGA | GCCGGTGCAGGAGTCGTA |
OsActin | TGGCATCTCTCAGCACATTCC | TGCACAATGGATGGGCCAGA |
表1 qRT-PCR分析特异性引物
Gene_ID /Name | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
OsLEA3-2 | CCAAGAACAAGCTGGGCGAG | CTTGAACTCCGTCGCCTTCT |
RAB21 | GCTCCAGCTCAAGCTCGTC | CATGGCATGCTGCTGCTC |
Os09g0351700 | TCTCGAACAGCAACCTGCAT | GGATGGAATTGTCCCGCTCA |
Os07g0658600 | GGGTTCGACACGTGCTACA | GGTGTGGATCACCACGTTCT |
Os02g0693700 | GTTCTACGAGCCTCTCACGG | CTGGTTGACGAGGCCAATCT |
Os11g0115100 | TCAGGAACCTCAACATGGGC | CTTGGAGCAGTCGACGGAG |
Os07g0251900 | CTTCGCTCGGGAACCTAACA | TGAGGTAGAGTGACCGGAGG |
Os01g0910800 | TGGCGCAGTACTACTCGGA | GCCGGTGCAGGAGTCGTA |
OsActin | TGGCATCTCTCAGCACATTCC | TGCACAATGGATGGGCCAGA |
Sample name | Total reads | Total mapped | Multiple mapped | Uniquely mapped | Non-splice reads | Splice reads |
---|---|---|---|---|---|---|
No-drought | 57 202 689 | 53 682 100 93.77% | 1 407 400 2.45% | 52 274 700 91.32% | 33 494 592 58.51% | 18 780 108 32.81% |
Drought | 51 734 760 | 48 915 870 94.56% | 1 027 373 1.99% | 47 888 497 92.57% | 30 689 990 59.31% | 17 198 507 33.27% |
表2 Reads与参考序列比对情况一览表
Sample name | Total reads | Total mapped | Multiple mapped | Uniquely mapped | Non-splice reads | Splice reads |
---|---|---|---|---|---|---|
No-drought | 57 202 689 | 53 682 100 93.77% | 1 407 400 2.45% | 52 274 700 91.32% | 33 494 592 58.51% | 18 780 108 32.81% |
Drought | 51 734 760 | 48 915 870 94.56% | 1 027 373 1.99% | 47 888 497 92.57% | 30 689 990 59.31% | 17 198 507 33.27% |
Baishanuo upland rice | Up | Down | Total |
---|---|---|---|
Known genes | 1 586 | 1 064 | 2 650 |
Unknown Gene | 83 | 58 | 141 |
Total | 1 669 | 1 122 | 2 791 |
表3 干旱胁迫前后差异表达基因列表
Baishanuo upland rice | Up | Down | Total |
---|---|---|---|
Known genes | 1 586 | 1 064 | 2 650 |
Unknown Gene | 83 | 58 | 141 |
Total | 1 669 | 1 122 | 2 791 |
TF family | Gene_ID | Discription | Readcount | ||
---|---|---|---|---|---|
CK | D | ||||
Znf(RING-finger) | Os03g0304400 | Zinc finger,RING/FYVE/PHD-type domain containing protein. | 99.68 | 260.35 | |
Znf | Os01g0785900 | Zinc finger,C2H2-type domain containing protein;Zinc finger,C2H2-type domain containing protein. | 0.00 | 48.73 | |
Znf(WRKY) | Os02g0652100 | Similar to WRKY-like DNA-binding protein. | 3.27 | 63.90 | |
Aux/IAA | Os03g0797800 | AUX/IAA protein family protein. | 0.56 | 136.83 | |
NAC | Os01g0191300 | Similar to NAC-type transcription factor;Similar to NAC-type transcription factor;Similar to NAC-type transcription factor. | 273.74 | 554.36 | |
MYB/MYC | Os04g0594100 | MYB transcription factor,Regulation of cellulose biosynthesis during secondary cell wall formation. | 11.65 | 210.07 | |
AP2/ERF | Os02g0654700 | AP2/ERF family protein,Abiotic stress response. | 1 609.36 | 693.36 | |
bZIP | Os01g0756200 | Similar to VirE2-interacting protein VIP1. | 1.69 | 107.25 | |
HD-ZIP | Os02g0649300 | HD-ZIP I protein,Transcription activator,Stress response,Panicle development . | 12.33 | 2 541.59 | |
HSF | Os05g0530400 | Heat stress transcription factor Spl7(Heat shock transcription factor)(Heat shock factor RHSF10). | 1 154.08 | 362.62 | |
DREB | Os04g0549700 | Similar to Dehydration responsive element binding protein 1F(DREB1F protein). | 9.16 | 227.34 |
表4 差异表达转录因子基因信息(部分)
TF family | Gene_ID | Discription | Readcount | ||
---|---|---|---|---|---|
CK | D | ||||
Znf(RING-finger) | Os03g0304400 | Zinc finger,RING/FYVE/PHD-type domain containing protein. | 99.68 | 260.35 | |
Znf | Os01g0785900 | Zinc finger,C2H2-type domain containing protein;Zinc finger,C2H2-type domain containing protein. | 0.00 | 48.73 | |
Znf(WRKY) | Os02g0652100 | Similar to WRKY-like DNA-binding protein. | 3.27 | 63.90 | |
Aux/IAA | Os03g0797800 | AUX/IAA protein family protein. | 0.56 | 136.83 | |
NAC | Os01g0191300 | Similar to NAC-type transcription factor;Similar to NAC-type transcription factor;Similar to NAC-type transcription factor. | 273.74 | 554.36 | |
MYB/MYC | Os04g0594100 | MYB transcription factor,Regulation of cellulose biosynthesis during secondary cell wall formation. | 11.65 | 210.07 | |
AP2/ERF | Os02g0654700 | AP2/ERF family protein,Abiotic stress response. | 1 609.36 | 693.36 | |
bZIP | Os01g0756200 | Similar to VirE2-interacting protein VIP1. | 1.69 | 107.25 | |
HD-ZIP | Os02g0649300 | HD-ZIP I protein,Transcription activator,Stress response,Panicle development . | 12.33 | 2 541.59 | |
HSF | Os05g0530400 | Heat stress transcription factor Spl7(Heat shock transcription factor)(Heat shock factor RHSF10). | 1 154.08 | 362.62 | |
DREB | Os04g0549700 | Similar to Dehydration responsive element binding protein 1F(DREB1F protein). | 9.16 | 227.34 |
TF family | Up-regulated | Down-regulated | Percentage/% |
---|---|---|---|
Znf(RING-finger) | 22 | 16 | 20.65 |
Znf | 41 | 48 | 48.37 |
Znf(WRKY) | 1 | 24 | 13.59 |
Aux/IAA | 16 | 6 | 11.96 |
NAC | 14 | 7 | 11.41 |
MYB/MYC | 17 | 1 | 9.78 |
AP2/ERF | 14 | 3 | 9.24 |
bZIP | 10 | 3 | 7.07 |
HD-ZIP | 2 | 0 | 1.09 |
HSF | 0 | 1 | 0.54 |
DREB | 1 | 0 | 0.54 |
表5 不同库中差异表达转录因子分布
TF family | Up-regulated | Down-regulated | Percentage/% |
---|---|---|---|
Znf(RING-finger) | 22 | 16 | 20.65 |
Znf | 41 | 48 | 48.37 |
Znf(WRKY) | 1 | 24 | 13.59 |
Aux/IAA | 16 | 6 | 11.96 |
NAC | 14 | 7 | 11.41 |
MYB/MYC | 17 | 1 | 9.78 |
AP2/ERF | 14 | 3 | 9.24 |
bZIP | 10 | 3 | 7.07 |
HD-ZIP | 2 | 0 | 1.09 |
HSF | 0 | 1 | 0.54 |
DREB | 1 | 0 | 0.54 |
Gene_ID | Discription | Readcount | ||
---|---|---|---|---|
CK | D | |||
Os09g0351700 | Protein kinase,catalytic domain domain containing protein. | 169.76 | 2.51 | |
Os11g0115100 | Similar to Lipid transfer protein. | 0.42 | 1 909.17 | |
Os07g0658600 | Similar to Nucleoid DNA-binding-like protein. | 1.06 | 510.01 | |
Os07g0251900 | Leucine-rich repeat,N-terminal domain containing protein. | 829.35 | 20.05 | |
Os02g0693700 | Multidrug resistance protein,putative,expressed | 0.84 | 320.03 | |
Os01g0910800 | Conserved hypothetical protein. | 2.58 | 3 210.34 |
表6 干旱胁迫前后差异表达基因信息
Gene_ID | Discription | Readcount | ||
---|---|---|---|---|
CK | D | |||
Os09g0351700 | Protein kinase,catalytic domain domain containing protein. | 169.76 | 2.51 | |
Os11g0115100 | Similar to Lipid transfer protein. | 0.42 | 1 909.17 | |
Os07g0658600 | Similar to Nucleoid DNA-binding-like protein. | 1.06 | 510.01 | |
Os07g0251900 | Leucine-rich repeat,N-terminal domain containing protein. | 829.35 | 20.05 | |
Os02g0693700 | Multidrug resistance protein,putative,expressed | 0.84 | 320.03 | |
Os01g0910800 | Conserved hypothetical protein. | 2.58 | 3 210.34 |
[1] | 黄春燕, 罗文启, 王波, 等. 海南中南部地区旱稻(山栏稻)种质资源及保育模式[J]. 广西植物, 2015,35(6):905-912. |
Huang CY, Luo WQ, Wang B, et al. Germplasm resource and conservative model of upland rice(Shanlan rice)in south-central Hainan[J]. Guihaia, 2015,35(6):905-912. | |
[2] | 刘华招, 季春德. 海南山栏稻种质资源的保护与利用[J]. 热带农业科学, 2016,36(12):49-51. |
Liu HZ, Ji CD. Conservation and utilization of Shanlan upland rice germplasm resources in Hainan province[J]. Chinese Journal of Tropical Agriculture, 2016,36(12):49-51. | |
[3] | 徐建欣, 杨洁, 徐志军. 海南山栏稻品种全生育期抗旱性鉴定与评价[J]. 热带作物学报, 2018,39(1):55-60. |
Xu JX, Yang J, Xu ZJ. Identification and evaluation of drought resistance of Shanlan upland rice in full growth in Hainan[J]. Chinese Journal of Tropical Crops, 2018,39(1):55-60. | |
[4] | 刘维俊, 徐立新, 何美丹, 等. 干旱胁迫下山栏稻与栽培水稻品种苗期表型性状及生理差异[J]. 热带生物学报, 2014,5(3):260-264. |
Liu WJ, Xu LX, He MD, et al. The differences in morphological and physiological traits between Shanlan upland rice and cultivated rice under drought stress[J]. Journal of Tropical Biology, 2014, (3):260-264. | |
[5] | 唐力琼, 严小微, 等. 山栏稻资源早期抗旱性评价及抗旱资源筛选[J]. 干旱地区农业研究, 2018,36(2):170-175. |
Tang LQ, Yan XW, et al. Evaluation and screening of drought resistance in Shanlan upland rice(Oryza sativa)germplasm resource during early growth stage[J]. Agricultural Research in The Arid Areas, 2018(2):170-175. | |
[6] | 郑成木, 黄东益, 等. “热大99W”序列旱稻新品系农艺特征与抗旱特性的研究[J]. 热带作物学报, 2000(4):52-58. |
Zheng CM, Huang DY, et al. Agronomic and drought-resistant characteristics of new crossed upland rice[J]. Chinese Journal of Topical Crops, 2000(4):52-58. | |
[7] | 蔡开炯, 唐力琼, 熊怀阳, 等. 海南特有地方陆稻品种山栏陆1号[J]. 种子, 2019,38(1):112-114. |
Cai KJ, Tang LQ, Xiong HY, et al. Shanlanlu No. 1 endemic local land rice variety in Hainan[J]. Seed, 2019(1):112-114. | |
[8] | 刘跃林. 山栏稻干旱诱导基因OsMSI7的功能研究[C]. 中国作物学会50周年庆祝会暨2011年学术年会论文集. 成都:中国作物学会, 2011: 57. |
Liu YL. Study on the function of drought inducing gene OsMSI7 in Shanlan upland rice[C]. Proceedings of the 50th anniversary celebration and 2011 annual conference of China crop society, Chengdu:China Crop Society, 2011: 57. | |
[9] | 刘欣欣, 徐立新, 袁潜华. 海南山栏稻HKT2基因片段的克隆与序列生物信息学分析[J]. 广东农业科学, 2013,40(9):128-132. |
Liu XX, Xu LX, Yuan QH. Cloning and sequence biological analysis of HKT2 gene from Shanlan upland rice in Hainan[J]. Guangdong Agricultural Sciences, 2013, (9):128-132. | |
[10] | 吴丹, 吴川德, 何美丹, 等. 水作和旱作对山栏稻生长的影响[J]. 热带生物报, 2017,8(3):318-323. |
Wu D, Wu CD, He MD, et al. The effects of paddy and upland cultivation on physiological parameters, agronomic traits and yield of Shanlan upland rice[J]. Journal of Tropical Biology, 2017,8(3):318-323. | |
[11] | 袁潜华, 吴丹, 吴川德, 等. 山栏稻水田灌溉种植的高产栽培方法:中国, 201711382129.3[P]. 2018-05-15. |
Yuan QH, Wu D, Wu CD, et al. Upland rice paddy field irrigation planting high-yield cultivation method:China, 201711382129.3[P]. 2018-05-15. | |
[12] | Park SH, Jeong JS, Lee KH, et al. OsbZIP23 and OsbZIP45, members of the rice basic leucine zipper transcription factor family, are involved in drought tolerance[J]. Plant Biotechnology Reports, 2015,9(2):89-96. |
[13] |
Liu G, Li X, Jin S, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014,9(1):e86895.
URL pmid: 24489802 |
[14] | Lee SC, Kim SH, Kim SR . Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D[J]. Journal of Plant Biology, 2013,56(2):115-121. |
[15] |
Xu DQ, Huang J, Guo SQ, et al. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolera-nce in rice(Oryza sativa L.)[J]. FEBS Letters, 2008,582(7):1037-1043.
URL pmid: 18325341 |
[16] |
Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control ofHSP101promoter[J]. Plant Cell Reports, 2009,28(1):21-30.
doi: 10.1007/s00299-008-0614-x URL pmid: 18818929 |
[17] |
Yang A, Dai XY, Zhang WH. AR2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012,63(7):2541-2556.
URL pmid: 22301384 |
[18] | 田新杰. 普通野生稻干旱诱导根特异基因转录组分析及表达鉴定[D]. 海口:海南大学, 2015. |
Tian XJ. Transcriptome analysis and expression identification of drought induced root-specific gene in common wild rice(Oryza rufipogon Griff. )[D]. Haikou:Hainan University, 2015. | |
[19] | 黄立钰. 水稻抗旱比较转录组学分析及候选基因OsDRAP1功能验证[D]. 北京:中国农业科学院, 2014. |
Huang LY. Comparative transcriptome analysis of drought tolerance and function characterization of OsDRAP1 in rice[D]. Beijing:Chinese Academy of Agricultural Sciences, 2014. | |
[20] | 杨洪强, 梁小娥. 蛋白激酶与植物逆境信号传递途径[J]. 植物生理学通讯, 2001,37(3):185-191. |
Yang HQ, Liang XE. Protein kinases and environmental stress signaling cascades in plants[J]. Plant Physiology Communications, 2001,37(3):185-191. | |
[21] | 范伟, 李雪姣, 关明俐, 等. 水稻几丁质酶基因的转录与表达特征[J]. 作物学报, 2014,40(4):571-580. |
Fan W, Li XJ, Guan ML, et al. Transcriptional and translational characterization of rice chitinase genes[J]. Acta Agronomica Sinica, 2014,40(4):571-580. | |
[22] | 耶兴元. Ca2+与植物抗逆性研究概况[J]. 信阳农业高等专科学校学报, 2008,18(1):124-126. |
Ye XY. Advances in the research of Ca2+ on hardness resistance of plants under stress[J]. Journal of Xinyang Agricultural College, 2008,18(1):124-126. | |
[23] | 张燕, 李娟, 姚青, 等. 植物生长物质与植物抗旱性的关系(综述)[J]. 亚热带植物科学. 2014,43(1):88-92. |
Zhang Y, Li J, Yao Q, et al. Relationship between plant growth substance and plant drought resistance[J]. Subtropical Plant Science, 2014,43(1):88-92. | |
[24] | 林桂权. 植物次生代谢产物及其在环境胁迫中的抵御作用[J]. 福建稻麦科技, 2009,27(3):39-42. |
Lin GQ. Plant secondary metabolites and their resistance to environmental stress[J]. Fujian Science and Technology of Rice and Wheat, 2009,27(3):39-42. |
[1] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[2] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[3] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[4] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
[5] | 洪军, 卫夏怡, 吉冰洁, 叶延欣, 程天赐. 铜绿假单胞菌对鲎素耐药前后的差异表达基因及SNP变化研究[J]. 生物技术通报, 2021, 37(9): 191-202. |
[6] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[7] | 叶娜, 张晓兰, 包鹏甲, 王兴东, 阎萍, 潘和平. 单细胞测序技术及其在毛囊发育中的应用[J]. 生物技术通报, 2021, 37(10): 245-256. |
[8] | 李益, 孙超. 植物单细胞转录组测序研究进展[J]. 生物技术通报, 2021, 37(1): 60-66. |
[9] | 马彦军, 段慧荣, 魏佳, Richard John Tiika, 单立山, 马瑞. NaCl胁迫下黑果枸杞转录组测序分析[J]. 生物技术通报, 2020, 36(2): 100-109. |
[10] | 贾丰莲, 李泽, 梁颖博, 李广悦, 杨秀芬. 大丽轮枝菌蛋白激发子PevD1激活本生烟促分裂原活化蛋白激酶MAPK[J]. 生物技术通报, 2020, 36(10): 15-24. |
[11] | 赵阳阳, 郭雨潇, 张凌云. 文冠果果实转录组测序及分析[J]. 生物技术通报, 2019, 35(6): 24-31. |
[12] | 张昭杨, 庞军玲, 韩梅, 冷鹏飞, 赵军. 转基因ABP9玉米株系的耐盐性分析[J]. 生物技术通报, 2019, 35(5): 48-57. |
[13] | 耿慧君, 邹伟, 崔惠敬, 李晓宇, 王丽丽, 徐永平. 基于转录组学的金黄色葡萄球菌噬菌体安全性评估[J]. 生物技术通报, 2019, 35(12): 64-75. |
[14] | 于海亮, 邹文斌, 王晓慧, 林雨鑫, 戴国俊, 张涛, 张跟喜, 谢恺舟, 王金玉, 施会强. 京海黄鸡柔嫩艾美耳球虫感染后盲肠转录组分析[J]. 生物技术通报, 2019, 35(11): 64-71. |
[15] | 刘思嘉, 田菲, 张存芳, 乔志刚, 赵凯. 鲤在低温胁迫下肝胰腺转录组测序分析[J]. 生物技术通报, 2018, 34(11): 168-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||