生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 15-24.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0230
收稿日期:
2020-03-06
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
贾丰莲,男,硕士研究生,研究方向:植物病害生物防治;E-mail: 基金资助:
JIA Feng-lian(), LI Ze, LIANG Ying-bo, LI Guang-yue, YANG Xiu-fen()
Received:
2020-03-06
Published:
2020-10-26
Online:
2020-11-02
摘要:
激活植物免疫系统、提高植物自身抗性是植物病害绿色防控的重要途径之一。促分裂原活化蛋白激酶(MAPK)是植物免疫系统的重要防御信号传导途径。为了探讨大丽轮枝菌蛋白激发子PevD1诱导植物广谱抗病性的分子机制,前期利用转录组测序(RNA-Seq)技术获得了本生烟响应PevD1诱导的差异表达基因,其中大量基因显著富集在MAPK通路上。本研究对这些差异表达基因进行了功能分类并进一步分析,发现这些基因涉及的功能十分广泛,包括参与植物识别的蛋白激酶(LRR-RLK)、调控基因表达的转录因子家族(WRKY和ERF)、与抗病相关的几丁质酶基因、参与钙离子信号传递的钙调蛋白(Calmodulin)、调控活性氧(Reactive oxygen species,ROS)产生的呼吸爆发氧化酶(Rboh)和清除ROS的过氧化氢酶(Catalase)等。从富集在MAPK通路中的差异表达基因中选出10个基因进行了qPCR验证,转录表达模式与转录组测序结果一致。用特异性磷酸化位点抗体杂交技术验证了PevD1激活了本生烟的MAPK,即水杨酸诱导的蛋白激酶SIPK和伤诱导的WIPK被激活。
贾丰莲, 李泽, 梁颖博, 李广悦, 杨秀芬. 大丽轮枝菌蛋白激发子PevD1激活本生烟促分裂原活化蛋白激酶MAPK[J]. 生物技术通报, 2020, 36(10): 15-24.
JIA Feng-lian, LI Ze, LIANG Ying-bo, LI Guang-yue, YANG Xiu-fen. Verticillium dahliae Elicitor PevD1 Activates MAPKs in Nicotiana benthamiana[J]. Biotechnology Bulletin, 2020, 36(10): 15-24.
Names | Forward primers(5'- 3') | Reverse primers(5'- 3') |
---|---|---|
Actin | GCAAGGAAATCACCGCTTTGG | TGCCTGCTGGAATGTGCTAAG |
BAK1 | GGTCAATAAGGAAGCGTATA | GGTCAATAAGGAAGCGTATA |
SERK2 | TTGGGATTAGAGAATAACAAG | TTGGGATTAGAGAATAACAAG |
ACS6 | AGGGTTTGCTTATAAACAATC | AGGGTTTGCTTATAAACAATC |
ACS1 | GACAGAGACACACTGAAA | GACAGAGACACACTGAAA |
WRKY22 | AGGACAGACCCAAATATG | AGGACAGACCCAAATATG |
MKS1 | GCTTCTCTTCCACCTATA | GCTTCTCTTCCACCTATA |
MYC2 | GGAGCTGAATTGTTTAATTTC | GGAGCTGAATTGTTTAATTTC |
ERF1 | GTCCTTGGTCTCTTCTTA | GTCCTTGGTCTCTTCTTA |
WRKY7 | GGTCTCCTATCAGTAAGTC | GGTCTCCTATCAGTAAGTC |
WRKY8 | CCTACTGAACTCTTGGAC | CCTACTGAACTCTTGGAC |
表1 差异表达基因的引物
Names | Forward primers(5'- 3') | Reverse primers(5'- 3') |
---|---|---|
Actin | GCAAGGAAATCACCGCTTTGG | TGCCTGCTGGAATGTGCTAAG |
BAK1 | GGTCAATAAGGAAGCGTATA | GGTCAATAAGGAAGCGTATA |
SERK2 | TTGGGATTAGAGAATAACAAG | TTGGGATTAGAGAATAACAAG |
ACS6 | AGGGTTTGCTTATAAACAATC | AGGGTTTGCTTATAAACAATC |
ACS1 | GACAGAGACACACTGAAA | GACAGAGACACACTGAAA |
WRKY22 | AGGACAGACCCAAATATG | AGGACAGACCCAAATATG |
MKS1 | GCTTCTCTTCCACCTATA | GCTTCTCTTCCACCTATA |
MYC2 | GGAGCTGAATTGTTTAATTTC | GGAGCTGAATTGTTTAATTTC |
ERF1 | GTCCTTGGTCTCTTCTTA | GTCCTTGGTCTCTTCTTA |
WRKY7 | GGTCTCCTATCAGTAAGTC | GGTCTCCTATCAGTAAGTC |
WRKY8 | CCTACTGAACTCTTGGAC | CCTACTGAACTCTTGGAC |
Gene ID | log2 Fold Change | Protein properties | ||
---|---|---|---|---|
6 hpi | 12 hpi | 24 hpi | ||
Niben101Scf09644g00009 | / | / | 3.90 | ERKY33,WRKY transcription factor 33 |
Niben101Scf03374g08019 | 3.80 | 3.71 | 1.10 | LRR-RLK,probable LRR receptor-like serine/threonine-protein kinase At3g47571 |
Niben101Scf07608g00007 | / | 8.30 | / | CALM,calmodulin |
Niben101Scf05928g03007 | 5.32 | 6.75 | 3.32 | probable LRR receptor-like serine/threonine-protein kinase At1g74361 |
Niben101Scf04406g07003 | / | / | 5.6 | SERK2,PREDICTED:somatic embryogenesis receptor kinase 2-like isoformX1, |
Niben101Scf18667g01002 | / | / | 2.6 | MKS1,MAP kinase substrate 1 |
Niben101Scf00821g16001 | 3.67 | 7.77 | 3.44 | BAK1,brassinosteroid insensitive 1-associated receptor kinase 1,RecName:Full=Leucine-rich repeat protein 1 |
Niben101Scf01090g02001 | 4.83 | / | 5.0 | ERF1,ethylene-responsive transcription factor 1,PREDICTED:ethylene-responsive transcription factor 1B |
Niben101Scf00219g00006 | 4.27 | / | / | CALM,calmodulin |
Niben101Scf37108g00003 | 4.27 | 6.46 | / | PP2C,protein phosphatase 2C,PREDICTED:putative late blight resistance protein homolog R1B-12 |
Niben101Scf04133g02009 | 5.18 | 6.37 | / | CALM,calmodulin,PREDICTED:probable calcium-binding protein CML45 |
Niben101Scf01297g04006 | 5.85 | 6.26 | / | WRKY33,WRKY transcription factor 33 |
Niben101Scf01942g04001 | 5.89 | 5.76 | 3.07 | WRKY33,WRKY transcription factor 33 |
Niben101Scf04053g02006 | / | 5.64 | 3.48 | PR1,pathogenesis-related protein 1 |
Niben101Scf09512g03008 | / | 5.38 | / | ACS1_2_6,1-aminocyclopropane-1-carboxylate synthase 1/2/6 |
Niben101Scf07491g00003 | / | 4.89 | 3.24 | CHIB,basic endochitinase B,PREDICTED:endochitinase A, |
Niben101Scf01398g00003 | / | 4.76 | 2.10 | PRKAA,AMPK,PREDICTED:putative late blight resistance protein homolog R1B-16 isoform X1 |
Niben101Scf01015g01002 | 1.84 | 4.45 | 1.265 | CHIB,basic endochitinase B,PREDICTED:wound-induced protein WIN1-like |
Niben101Scf07345g00016 | 2.38 | 3.46 | / | RBOH,respiratory burst oxidase |
Niben101Scf04403g02004 | 2.06 | 5.85 | 1.72 | PRF,disease resistance protein |
Niben101Scf02171g00008 | 3.3 | 2.82 | 1.24 | MPK3,mitogen-activated protein kinase 3,wound-inuduced protein kinase,WIPK |
Niben101Scf14996g00009 | 1.0 | 1.6 | 1.69 | CAT,catalase |
Niben101Scf02041g00002 | 1.0 | 1.57 | 3.51 | CHIB,basic endochitinase B |
Niben101Scf03461g05022 | 1.0 | 1.45 | 1.23 | PRKAA,AMPK,5'-AMP-activated protein kinase,catalytic alpha subunit,PREDICTED:putative late blight resistance protein homolog R1B-23 |
表2 富集在MAPK通路上部分差异表达基因
Gene ID | log2 Fold Change | Protein properties | ||
---|---|---|---|---|
6 hpi | 12 hpi | 24 hpi | ||
Niben101Scf09644g00009 | / | / | 3.90 | ERKY33,WRKY transcription factor 33 |
Niben101Scf03374g08019 | 3.80 | 3.71 | 1.10 | LRR-RLK,probable LRR receptor-like serine/threonine-protein kinase At3g47571 |
Niben101Scf07608g00007 | / | 8.30 | / | CALM,calmodulin |
Niben101Scf05928g03007 | 5.32 | 6.75 | 3.32 | probable LRR receptor-like serine/threonine-protein kinase At1g74361 |
Niben101Scf04406g07003 | / | / | 5.6 | SERK2,PREDICTED:somatic embryogenesis receptor kinase 2-like isoformX1, |
Niben101Scf18667g01002 | / | / | 2.6 | MKS1,MAP kinase substrate 1 |
Niben101Scf00821g16001 | 3.67 | 7.77 | 3.44 | BAK1,brassinosteroid insensitive 1-associated receptor kinase 1,RecName:Full=Leucine-rich repeat protein 1 |
Niben101Scf01090g02001 | 4.83 | / | 5.0 | ERF1,ethylene-responsive transcription factor 1,PREDICTED:ethylene-responsive transcription factor 1B |
Niben101Scf00219g00006 | 4.27 | / | / | CALM,calmodulin |
Niben101Scf37108g00003 | 4.27 | 6.46 | / | PP2C,protein phosphatase 2C,PREDICTED:putative late blight resistance protein homolog R1B-12 |
Niben101Scf04133g02009 | 5.18 | 6.37 | / | CALM,calmodulin,PREDICTED:probable calcium-binding protein CML45 |
Niben101Scf01297g04006 | 5.85 | 6.26 | / | WRKY33,WRKY transcription factor 33 |
Niben101Scf01942g04001 | 5.89 | 5.76 | 3.07 | WRKY33,WRKY transcription factor 33 |
Niben101Scf04053g02006 | / | 5.64 | 3.48 | PR1,pathogenesis-related protein 1 |
Niben101Scf09512g03008 | / | 5.38 | / | ACS1_2_6,1-aminocyclopropane-1-carboxylate synthase 1/2/6 |
Niben101Scf07491g00003 | / | 4.89 | 3.24 | CHIB,basic endochitinase B,PREDICTED:endochitinase A, |
Niben101Scf01398g00003 | / | 4.76 | 2.10 | PRKAA,AMPK,PREDICTED:putative late blight resistance protein homolog R1B-16 isoform X1 |
Niben101Scf01015g01002 | 1.84 | 4.45 | 1.265 | CHIB,basic endochitinase B,PREDICTED:wound-induced protein WIN1-like |
Niben101Scf07345g00016 | 2.38 | 3.46 | / | RBOH,respiratory burst oxidase |
Niben101Scf04403g02004 | 2.06 | 5.85 | 1.72 | PRF,disease resistance protein |
Niben101Scf02171g00008 | 3.3 | 2.82 | 1.24 | MPK3,mitogen-activated protein kinase 3,wound-inuduced protein kinase,WIPK |
Niben101Scf14996g00009 | 1.0 | 1.6 | 1.69 | CAT,catalase |
Niben101Scf02041g00002 | 1.0 | 1.57 | 3.51 | CHIB,basic endochitinase B |
Niben101Scf03461g05022 | 1.0 | 1.45 | 1.23 | PRKAA,AMPK,5'-AMP-activated protein kinase,catalytic alpha subunit,PREDICTED:putative late blight resistance protein homolog R1B-23 |
[1] |
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development[J]. Trends in Plant Science, 2015,20:56-64.
doi: 10.1016/j.tplants.2014.10.001 URL pmid: 25457109 |
[2] | Xu J, Yang K, Yoo SJ, et al. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco[J]. Plant Cell & Environment, 2014,37(7):1614-1625. |
[3] |
Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002,415:977-983.
URL pmid: 11875555 |
[4] |
Suarez-Rodriguez MC, Adams-Phillips L, et al. MEKK1 is required for flg22 -induced MPK4 activation in Arabidopsis plants[J]. Plant Physiology, 2007,143:661-669.
URL pmid: 17142480 |
[5] |
Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO Journal, 2008,27:2214-2221.
doi: 10.1038/emboj.2008.147 URL pmid: 18650934 |
[6] |
Brader G, Djamei A, Teige M, et al. The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2007,20:589-596.
URL pmid: 17506336 |
[7] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen- activated protein kinase[J]. Plant Cell, 2003,15:745-759.
doi: 10.1105/tpc.008714 URL pmid: 12615946 |
[8] |
Samuel MA, Ellis BE. Double jeopardy:both overexpression and suppression of a redox- activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive[J]. Plant Cell, 2002,14:2059-2069.
doi: 10.1105/tpc.002337 URL pmid: 12215505 |
[9] |
Wang B, Yang X, Zeng H, et al. The Purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco[J]. Applied Microbiology and Biotechnology, 2012,93:191-201.
doi: 10.1007/s00253-011-3405-1 URL pmid: 21691787 |
[10] | Bu B, Qiu D, Zeng H, et al. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton[J]. Plant Cell Reports, 2014,14:461-470. |
[11] |
Zhang Y, Gao Y, Liang Y, et al. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection[J]. Journal of Experimental Botany, 2019,70(2):613-626.
URL pmid: 30295911 |
[12] |
Gomez-Gomez L, Boller T. FLS2:an LRR receptor -like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000,5:1003-1011.
doi: 10.1016/s1097-2765(00)80265-8 URL pmid: 10911994 |
[13] |
Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF -Tu by the receptor EFR restricts agrobacterium -mediated transformation[J]. Cell, 2006,125:749-760.
URL pmid: 16713565 |
[14] |
Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:19613-19618.
URL pmid: 18042724 |
[15] |
Wan J, Zhang XC, Neece D, et al. A LysM receptor -like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J]. Plant Cell, 2008,20:471-481.
URL pmid: 18263776 |
[16] |
Hayafune M, Berisio R, Marchetti R, et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:E404-E413.
URL pmid: 24395781 |
[17] |
Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007,448(7152):497-500.
URL pmid: 17625569 |
[18] |
Heese A, Hann DR, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(29):12217-12222.
URL pmid: 17626179 |
[19] |
Yamaguchi K, Yamada K, Ishikawa K, et al. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity[J]. Cell Host Microbe, 2013,13:347-357.
doi: 10.1016/j.chom.2013.02.007 URL pmid: 23498959 |
[20] |
Shinya T, Yamaguchi K, Desaki Y, et al. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27[J]. Plant Journal, 2014,79:56-66.
doi: 10.1111/tpj.12535 URL pmid: 24750441 |
[21] |
Zhang C, Chen H, Zhuang RR, et al. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco[J]. Journal of Experimental Botany, 2019,70(19):5407-5421.
URL pmid: 31173088 |
[22] |
Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors:molecular regulation and stress responses in plants[J]. Frontiers in Plant Science, 2016,7:760.
doi: 10.3389/fpls.2016.00760 URL pmid: 27375634 |
[23] | Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biology, 2007,10:366-371. |
[24] |
Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010,15:247-258.
doi: 10.1016/j.tplants.2010.02.006 URL pmid: 20304701 |
[25] |
Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynjournal in Arabidopsis[J]. Plant Cell, 2011,23:1639-1653.
doi: 10.1105/tpc.111.084996 URL pmid: 21498677 |
[26] |
Chen H, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology, 2010,10:281.
URL pmid: 21167067 |
[27] | Yan L, Liu ZQ, Xu YH, et al. Auto and cross-repression of three Arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling[J]. Journal of Plant Growth Regulation, 2013,32:399-416. |
[28] |
Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98:741-746.
doi: 10.1073/pnas.98.2.741 URL pmid: 11209069 |
[29] |
Yoshioka H, Numata N, Nakajima K, et al. Nicotiana benthamiana homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to phytophthora infestans[J]. Plant Cell, 2003,15(3):706-718.
doi: 10.1105/tpc.008680 URL pmid: 12615943 |
[30] |
Adachi H, Ishihama N, Nakano T, et al. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016,11(6):e1183085.
URL pmid: 27191816 |
[31] |
Ogata T, Okada H, Kawaide H, et al. Involvement of NtERF3 in the cell death signaling pathway mediated by SIPK/WIPK and WRKY1 in tobacco plants[J]. Plant Biology, 2015,17:962-972.
URL pmid: 25996234 |
[32] |
Zuo KJ, Qin J, Zhao JY, et al. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes[J]. Gene, 2007,391:80-90.
URL pmid: 17321073 |
[33] |
Shin R, Park JM, An JM, et al. Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens[J]. Molecular Plant -Microbe Interactions, 2002,15:983-989.
URL pmid: 12437295 |
[34] |
Dong L, Cheng Y, Wu J, et al. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean[J]. Journal of Experimental Botany, 2015,66:2635-2647.
URL pmid: 25779701 |
[35] |
Zhang G, Chen M, Li L, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco[J]. Journal of Experimental Botany, 2009,60(13):3781-3796.
URL pmid: 19602544 |
[36] |
李业, 陈银华, 吴家和, 等. OsRboh 基因家族在水稻免疫应答中的表达及功能分析[J]. 生物工程学报, 2011,27(11):1574-1585.
pmid: 22393712 |
Li Y. Chen YH, Wu JH, et al. Expression and functional analysis of OsRboh gene family in rice immune response[J]. Chinese Journal of Biotechnology, 2011,27(11):1574-1585.
URL pmid: 22393712 |
|
[37] | 刘秋圆, 贺浩华, 胡丽芳. 植物Rboh基因功能及其活性调节机制的研究进展[J]. 生物技术通报, 2013,11:8-13. |
Liu QY, He HH, Hu LF. Research progress in plant Rboh gene function and activity regulation mechanism[J]. Biotechnology Bulletin, 2013,11:8-13. | |
[38] |
Boudsocq M, Willmann MR, McCormack M, et al. Differential innate immune signalling via Ca2+ sensor protein kinases[J]. Nature, 2010,464:418-422.
URL pmid: 20164835 |
[39] |
Yuasa T, Ichimura K, Mizoguchi T, et al. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase[J]. Plant Cell Physiology, 2001,42:1012-1016.
URL pmid: 11577197 |
[40] | Zhang S, Klessig DF. Salicylic acid activates a 48-kD MAP kinase in tobacco[J]. Plant Cell 1997,9:809-824. |
[41] |
Boller T, Felix G. A renaissance of elicitors:perception of microbe -associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009,60:379-406.
URL pmid: 19400727 |
[42] |
Liang X, Zhou J. Receptor-like cytoplasmic kinases:central players in plant receptor kinase-mediated signaling[J]. Annual Review of Plant Biology, 2018,69:267-299.
doi: 10.1146/annurev-arplant-042817-040540 URL pmid: 29719165 |
[43] |
Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves:possible involvement of NtWRKYs and autorepression[J]. The Journal of Biological Chemistry, 2004,279:55355-55361.
URL pmid: 15509567 |
[1] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 陈虎, 杨章旗, 孙爽, 李鹏, 徐慧兰. 马尾松MAPK级联途径应答信号物质基因的表达分析[J]. 生物技术通报, 2022, 38(6): 187-197. |
[4] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[5] | 许机分, 陈泓妃, 王娜, 刘晶. 真菌Hog1 MAPK信号通路研究进展[J]. 生物技术通报, 2022, 38(11): 32-40. |
[6] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[7] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
[8] | 洪军, 卫夏怡, 吉冰洁, 叶延欣, 程天赐. 铜绿假单胞菌对鲎素耐药前后的差异表达基因及SNP变化研究[J]. 生物技术通报, 2021, 37(9): 191-202. |
[9] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[10] | 包林珠, 时灿, 卢玲儿, 徐行, 周泽斌, 任建峰, 李伟明, 张庆华. 斑马鱼(Danio rerio)mapk1基因对tp53基因调控研究[J]. 生物技术通报, 2021, 37(12): 160-168. |
[11] | 叶娜, 张晓兰, 包鹏甲, 王兴东, 阎萍, 潘和平. 单细胞测序技术及其在毛囊发育中的应用[J]. 生物技术通报, 2021, 37(10): 245-256. |
[12] | 李益, 孙超. 植物单细胞转录组测序研究进展[J]. 生物技术通报, 2021, 37(1): 60-66. |
[13] | 马彦军, 段慧荣, 魏佳, Richard John Tiika, 单立山, 马瑞. NaCl胁迫下黑果枸杞转录组测序分析[J]. 生物技术通报, 2020, 36(2): 100-109. |
[14] | 翟楠鑫, 迟会, 夏玥琳, 刘彩月, 裴新梧, 袁潜华. 海南山栏稻抗旱基因转录组分析[J]. 生物技术通报, 2020, 36(12): 12-20. |
[15] | 赵阳阳, 郭雨潇, 张凌云. 文冠果果实转录组测序及分析[J]. 生物技术通报, 2019, 35(6): 24-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||