生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 60-66.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1011
收稿日期:
2020-08-12
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
李益,女,硕士研究生,研究方向:药用植物功能基因组学;E-mail: 基金资助:
Received:
2020-08-12
Published:
2021-01-26
Online:
2021-01-15
摘要:
单细胞转录组测序是一种在单细胞水平上研究基因表达的技术。多孔板法和液滴法是目前应用于植物研究的两类主要的单细胞转录组技术。首先概述了植物单细胞转录组测序的技术原理和数据分析流程,然后介绍了植物单细胞转录组的研究进展,重点阐述了单细胞转录组测序技术在鉴定植物细胞类型、揭示细胞演化轨迹和构建细胞间调控网络中的应用。单细胞转录组测序技术可为植物领域的研究提供新视角,有助于识别和理解复杂组织中关键的细胞生物学过程。
李益, 孙超. 植物单细胞转录组测序研究进展[J]. 生物技术通报, 2021, 37(1): 60-66.
LI Yi, SUN Chao. Research Progress in Single-Cell RNA-Seq of Plant[J]. Biotechnology Bulletin, 2021, 37(1): 60-66.
建库方法 | 分析技术 | 捕获细 胞数目 | 扩增 技术 | 转录本 覆盖率 | 参考文献 |
---|---|---|---|---|---|
多孔板法 | Smartseq2 | 94-384/plate | PCR | 全长 | [10] |
CEL-seq2 | 94-384/plate | IVT | 3'端 | [11] | |
液滴法 | Chromium | 80 000+ | PCR | 3'端 | [13] |
Drop-seq | 50 000+ | PCR | 3'端 | [14] | |
inDrop | 40 000+ | PCR | 3'端 | [15] |
表1 单细胞转录分析技术
建库方法 | 分析技术 | 捕获细 胞数目 | 扩增 技术 | 转录本 覆盖率 | 参考文献 |
---|---|---|---|---|---|
多孔板法 | Smartseq2 | 94-384/plate | PCR | 全长 | [10] |
CEL-seq2 | 94-384/plate | IVT | 3'端 | [11] | |
液滴法 | Chromium | 80 000+ | PCR | 3'端 | [13] |
Drop-seq | 50 000+ | PCR | 3'端 | [14] | |
inDrop | 40 000+ | PCR | 3'端 | [15] |
建库方法 | 分析技术 | 物种 | 样本类型 | 细胞数 | 总基因数(转录本数) | 基因数(转录本数)/细胞 | 参考文献 |
---|---|---|---|---|---|---|---|
多孔板法 | Smart-seq2 | 拟南芥 | 根 | 238 | —— | —— | [8] |
Cell-seq2 | 玉米 | 生殖细胞 | 144 | 101 245* | —— | [9] | |
Cell-seq2 | 拟南芥 | 静止中心细胞 | 24 | —— | 14 000 | [53] | |
中柱细胞 | 7 | —— | 4 312 | [53] | |||
液滴法 | Chromium | 拟南芥 | 根(3个生物学重复) | 7 522 | >22 000 | 5 000 | [16] |
Chromium | 拟南芥 | 根(2个生物学重复) | 4 727 | 16 975 | 4 276 | [17] | |
Chromium | 拟南芥 | 根 | 3 121 | 22 419 | 2 445 | [18] | |
根(热胁迫) | 1 009 | 21 237 | 1 009 | [18] | |||
根 | 1 079 | 22 971 | 4 079 | [18] | |||
Chromium | 拟南芥 | 根 | 7 695 | 23 161 | —— | [19] | |
Chromium | 拟南芥 | 子叶 | 12 844 | —— | —— | [20] | |
Drop-seq | 拟南芥 | 根 | 6 102 | —— | >1 000* | [54] | |
根(1%蔗糖处理) | 6 096 | —— | —— | [54] | |||
Drop-seq | 拟南芥 | 根 | 374 | —— | —— | [55] |
表2 植物单细胞转录组研究概况
建库方法 | 分析技术 | 物种 | 样本类型 | 细胞数 | 总基因数(转录本数) | 基因数(转录本数)/细胞 | 参考文献 |
---|---|---|---|---|---|---|---|
多孔板法 | Smart-seq2 | 拟南芥 | 根 | 238 | —— | —— | [8] |
Cell-seq2 | 玉米 | 生殖细胞 | 144 | 101 245* | —— | [9] | |
Cell-seq2 | 拟南芥 | 静止中心细胞 | 24 | —— | 14 000 | [53] | |
中柱细胞 | 7 | —— | 4 312 | [53] | |||
液滴法 | Chromium | 拟南芥 | 根(3个生物学重复) | 7 522 | >22 000 | 5 000 | [16] |
Chromium | 拟南芥 | 根(2个生物学重复) | 4 727 | 16 975 | 4 276 | [17] | |
Chromium | 拟南芥 | 根 | 3 121 | 22 419 | 2 445 | [18] | |
根(热胁迫) | 1 009 | 21 237 | 1 009 | [18] | |||
根 | 1 079 | 22 971 | 4 079 | [18] | |||
Chromium | 拟南芥 | 根 | 7 695 | 23 161 | —— | [19] | |
Chromium | 拟南芥 | 子叶 | 12 844 | —— | —— | [20] | |
Drop-seq | 拟南芥 | 根 | 6 102 | —— | >1 000* | [54] | |
根(1%蔗糖处理) | 6 096 | —— | —— | [54] | |||
Drop-seq | 拟南芥 | 根 | 374 | —— | —— | [55] |
[1] | Libault M, Pingault L, et al. Plant systems biology at the single-cell level[J]. Trends Plant Sci, 2017,22(11):949-960. |
[2] |
文路, 汤富酬. 单细胞转录组高通量测序分析新进展[J]. 遗传, 2014,36(11):1069-1076.
pmid: 25567865 |
Wen L, Tang FC. Recent progress in single-cell RNA-Seq analysis[J]. Hereditas, 2014,36(11):1069-1076.
URL pmid: 25567865 |
|
[3] | Efroni I, Birnbaum KD. The potential of single-cell profiling in plants[J]. Genome Biology, 2016,17(1):65. |
[4] | Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Molecular Cell, 2015,58(4):610-620. |
[5] | Baran-Gale J, Chandra T, Kirschner K. Experimental design for single-cell RNA sequencing[J]. Briefings in Functional Genomics, 2017,17(4):233-239. |
[6] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014,343(6172):776-779.
doi: 10.1126/science.1247651 URL pmid: 24531970 |
[7] |
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq[J]. Mol Aspects Med, 2018,59:114-122.
URL pmid: 28712804 |
[8] | Efroni I, Mello A, Nawy T, et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions[J]. Cell, 2016,165(7):1721-1733. |
[9] |
Nelms B, Walbot V. Defining the developmental program leading to meiosis in maize[J]. Science, 2019,364(6435):52-56.
doi: 10.1126/science.aav6428 URL pmid: 30948545 |
[10] |
Picelli S, Faridani OR, et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nature Protocols, 2014,9(1):171-181.
doi: 10.1038/nprot.2014.006 URL |
[11] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biology, 2016,17(1):77.
doi: 10.1186/s13059-016-0938-8 URL |
[12] |
Zhang X, Li T, Liu F, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems[J]. Molecular Cell, 2019,73(1):130-142.
URL pmid: 30472192 |
[13] | Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 2017,8(1):14049. |
[14] | Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015,161(5):1202-1214. |
[15] |
Klein Allon M, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015,161(5):1187-1201.
doi: 10.1016/j.cell.2015.04.044 URL pmid: 26000487 |
[16] | Ryu KH, Huang L, Kang HM, et al. Single-cell RNA sequencing resolves molecular relationships among individual plant cells[J]. Plant Physiology, 2019,179(4):1444-1456. |
[17] | Denyer T, Ma X, Klesen S, et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing[J]. Developmental Cell, 2019,48(6):840-852. |
[18] | Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, et al. Dynamics of gene expression in single root cells of Arabidopsis thaliana[J]. The Plant Cell, 2019,31(5):993-1011. |
[19] | Zhang TQ, Xu ZG, Shang GD, et al. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root[J]. Mol Plant, 2019,12(5):648-660. |
[20] | Liu Z, Zhou Y, Guo J, et al. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing[J]. Mol Plant, 2020,13(8):1178-1193. |
[21] | Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking:empowering single-cell ‘omics’ with microfluidic devices[J]. Nature Reviews:Genetics, 2017,18(6):345-361. |
[22] | Rich-Griffin C, Stechemesser A, Finch J, et al. Single-cell transcriptomics:A high-resolution avenue for plant functional genomics[J]. Trends Plant Sci, 2020,25(2):186-197. |
[23] | Dal Molin A, Di Camillo B. How to design a single-cell RNA-sequencing experiment:pitfalls, challenges and perspectives[J]. Brief Bioinform, 2018,20(4):1384-1394. |
[24] | Wu Y, Zhang K. Tools for the analysis of high-dimensional single-cell RNA sequencing data[J]. Nat Rev Nephrol, 2020,16(7):408-421. |
[25] | Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis:a tutorial[J]. Molecular Systems Biology, 2019,15(6):e8746. |
[26] | Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data analysis[J]. Front Genet, 2019,10:317. |
[27] | AlJanahi AA, Danielsen M, Dunbar CE. An Introduction to the analysis of single-cell RNA-sequencing data[J]. Molecular Therapy Methods & Clinical Development, 2018,10:189-196. |
[28] | Weinreb C, Wolock S, Klein AM. SPRING:a kinetic interface for visualizing high dimensional single-cell expression data[J]. Bioinformatics, 2018,34(7):1246-1248. |
[29] | Ziegenhain C, Vieth B, et al. Quantitative single-cell transcriptomics[J]. Brief Funct Genomics, 2018,17(4):220-232. |
[30] | Ding B, Zheng L, Zhu Y, et al. Normalization and noise reduction for single cell RNA-seq experiments[J]. Bioinformatics, 2015,31(13):2225-2227. |
[31] | van den Brink SC, Sage F, Vértesy Á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nature Methods, 2017,14(10):935-936. |
[32] | Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nature Biotechnology, 2018,36(5):411-420. |
[33] | Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data[J]. Genome Biology, 2020,21(1):12. |
[34] | Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments[J]. Nature Methods, 2013,10(11):1093-1095. |
[35] | van der Mauten L, Hinton G. Visualizing data using t-SNE[J]. J Mach Learn Res, 2008,9(2605):2579-2605. |
[36] | Diaz-Papkovich A, Anderson-Trocmé L, et al. UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts[J]. PLoS Genetics, 2019,15(11):e1008432. |
[37] | Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data[J]. F1000Research, 2018,7:1141. |
[38] | Abdelaal T, Michielsen L, Cats D, et al. A comparison of automatic cell identification methods for single-cell RNA sequencing data[J]. Genome Biology, 2019,20(1):194. |
[39] | Zhang X, Lan Y, Xu J, et al. CellMarker:a manually curated resource of cell markers in human and mouse[J]. Nucleic Acids Research, 2019,47(D1):D721-D728. |
[40] | Franzén O, Gan LM, Björkegren JLM. PanglaoDB:a web server for exploration of mouse and human single-cell RNA sequencing data[J]. Database(Oxford), 2019(2019)::baz046. |
[41] | Kiselev VY, Yiu A, Hemberg M. scmap:projection of single-cell RNA-seq data across data sets[J]. Nature Methods, 2018,15(5):359-362. |
[42] | Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nature Immunology, 2019,20(2):163-172. |
[43] | Zhang AW, O’Flanagan C, Chavez EA, et al. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling[J]. Nature Methods, 2019,16(10):1007-1015. |
[44] | Haghverdi L, Büttner M, Wolf FA, et al. Diffusion pseudotime robustly reconstructs lineage branching[J]. Nature Methods, 2016,13(10):845-848. |
[45] | Saelens W, Cannoodt R, Todorov H, et al. A comparison of single-cell trajectory inference methods[J]. Nature Biotechnology, 2019,37(5):547-554. |
[46] | Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotech, 2014,32(4):381-386. |
[47] | Qiu X, Hill A, Packer J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nature Methods, 2017,14(3):309-315. |
[48] | Alessandrì L, Arigoni M, Calogero R, et al. Differential expression analysis in single-cell transcriptomics[J]. Methods in Molecular Biology, 2019,1979:425-432. |
[49] | Wang T, Li B, Nelson CE, et al. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data[J]. BMC Bioinformatics, 2019,20(1):40. |
[50] | Miao Z, Deng K, Wang X, et al. DEsingle for detecting three types of differential expression in single-cell RNA-seq data[J]. Bioinformatics, 2018,34(18):3223-3224. |
[51] | Wang T, Nabavi S. SigEMD:A powerful method for differential gene expression analysis in single-cell RNA sequencing data[J]. Methods, 2018,145:25-32. |
[52] | Finak G, McDavid A, Yajima M, et al. MAST:a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data[J]. Genome Biology, 2015,16(1):278. |
[53] | Efroni I, Ip PL, Nawy T, et al. Quantification of cell identity from single-cell gene expression profiles[J]. Genome Biology, 2015,16(1):9. |
[54] | Shulse CN, Cole BJ, Ciobanu D, et al. High-throughput single-cell transcriptome profiling of plant cell types[J]. Cell Rep, 2019,27(7):2241-2247. |
[55] | Turco GM, Rodriguez-Medina J, Siebert S, et al. Molecular mechanisms driving switch behavior in xylem cell differentiation[J]. Cell Reports, 2019,28(2):342-351. |
[56] | Yi F, Gu W, Chen J, et al. High temporal-resolution transcriptome landscape of early maize seed development[J]. Plant Cell, 2019,31(5):974-992. |
[57] | Rhee SY, Birnbaum KD, Ehrhardt DW. Towards building a plant cell atlas[J]. Trends Plant Sci, 2019,24(4):303-310. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 吴昊, 刘紫微, 郑颖, 戴雅文, 时权. 单细胞水平解析人牙龈间充质干细胞异质性[J]. 生物技术通报, 2023, 39(7): 325-332. |
[3] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[4] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[5] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[6] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
[7] | 洪军, 卫夏怡, 吉冰洁, 叶延欣, 程天赐. 铜绿假单胞菌对鲎素耐药前后的差异表达基因及SNP变化研究[J]. 生物技术通报, 2021, 37(9): 191-202. |
[8] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[9] | 叶娜, 张晓兰, 包鹏甲, 王兴东, 阎萍, 潘和平. 单细胞测序技术及其在毛囊发育中的应用[J]. 生物技术通报, 2021, 37(10): 245-256. |
[10] | 张淼, 孙祥瑞, 徐春明. 单细胞RNA测序数据分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 52-59. |
[11] | 过冬冬, 孙芬, 贺轩昂, 羊东晔, 黄来强. 单细胞测序技术在肝脏疾病的应用与展望[J]. 生物技术通报, 2021, 37(1): 137-144. |
[12] | 朱庆元, 李天晴. 单细胞转录组测序技术在心脏发育、疾病以及医学中的应用[J]. 生物技术通报, 2021, 37(1): 145-154. |
[13] | 马彦军, 段慧荣, 魏佳, Richard John Tiika, 单立山, 马瑞. NaCl胁迫下黑果枸杞转录组测序分析[J]. 生物技术通报, 2020, 36(2): 100-109. |
[14] | 翟楠鑫, 迟会, 夏玥琳, 刘彩月, 裴新梧, 袁潜华. 海南山栏稻抗旱基因转录组分析[J]. 生物技术通报, 2020, 36(12): 12-20. |
[15] | 贾丰莲, 李泽, 梁颖博, 李广悦, 杨秀芬. 大丽轮枝菌蛋白激发子PevD1激活本生烟促分裂原活化蛋白激酶MAPK[J]. 生物技术通报, 2020, 36(10): 15-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||