生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 187-194.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0792
收稿日期:
2020-06-30
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
徐刘佳,女,硕士研究生,研究方向:脂质的修饰与改性;E-mail: 基金资助:
XU Liu-jia(), ZHENG Ming-ming()
Received:
2020-06-30
Published:
2021-02-26
Online:
2021-02-26
摘要:
皮克林乳液是依靠固体颗粒稳定的乳液,具有抗聚结性、稳定性好,颗粒易于分离、成本低、毒性小等优点。研究表明将其应用于多相酶催化反应中,可以大大提高体系中的界面反应面积,加快传质速率。综述了皮克林乳液常用的稳定剂颗粒以及颗粒表面改性对乳液稳定的影响。在此基础上,进一步详细论述了皮克林乳液在酶反应体系中应用以及具有“开关”调控的智能皮克林乳液酶反应体系,并对皮克林乳液酶反应体系未来的发展进行了展望。旨在为构建更高效、绿色的酶催化反应提供更多的思路。
徐刘佳, 郑明明. 皮克林乳液酶反应体系的构建与应用研究进展[J]. 生物技术通报, 2021, 37(2): 187-194.
XU Liu-jia, ZHENG Ming-ming. Research Progress on the Construction and Application of Pickering Emulsion Enzymatic Reaction System[J]. Biotechnology Bulletin, 2021, 37(2): 187-194.
颗粒种类 | 改性前 | 改性后 | ||||
---|---|---|---|---|---|---|
直径/μm | 三相接触角/° | 直径/μm | 三相接触角/° | |||
淀粉球晶 | 3.97 | 39.5 | 3.88 | 74.4 | ||
大米淀粉 | 7.61 | 42.5 | 7.55 | 67.6 | ||
玉米淀粉 | 14.98 | 33.6 | 14.38 | 60.7 | ||
马铃薯淀粉 | 26.93 | 46.1 | 24.77 | 54.4 |
表1 不同种类淀粉改性前后的颗粒尺寸与三相接触角[27]
颗粒种类 | 改性前 | 改性后 | ||||
---|---|---|---|---|---|---|
直径/μm | 三相接触角/° | 直径/μm | 三相接触角/° | |||
淀粉球晶 | 3.97 | 39.5 | 3.88 | 74.4 | ||
大米淀粉 | 7.61 | 42.5 | 7.55 | 67.6 | ||
玉米淀粉 | 14.98 | 33.6 | 14.38 | 60.7 | ||
马铃薯淀粉 | 26.93 | 46.1 | 24.77 | 54.4 |
酶的种类 | 稳定剂/载体 | 酶促反应 | 有机溶剂 | 转化率 | 参考文献 |
---|---|---|---|---|---|
脂肪酶AYS | 介孔碳球 | 植物甾醇和α-亚麻酸的酯化反应 | - | 1.5 h,92% | [ |
脂肪酶CALB | 纳米聚合体PEG-b-P(S-co-TMI) | 1-己醇与己酸的酯化反应 | 甲苯 | 24 h,80% | [ |
脂肪酶 | 海藻酸盐复合粒子E@Alg@s-TiO2 | 1-己醇与己酸的酯化反应 | 正己烷 | 4 h,85-95% | [ |
脂肪酶CALB | 纳米共聚物P(St-co-GMA) | 己醇和己酸的酯化反应 | 庚烷 | 24 h,96.5% | [ |
脂肪酶CALB | 二氧化硅纳米花 | 甲醇和废弃油生产生物柴油 | 环己烷 | 8.11 h,98.5% | [ |
脂肪酶CALB | 功能化多壁碳纳米管MWCNTs-NH2 | 马齿苋种子油和甲醇生产生物柴油 | 正庚烷 | 11.06 h,95.2% | [ |
脂肪酶CALB | 介孔纳米二氧化硅 | 1-己醇与己酸的酯化反应 | 甲苯 | 20 min,88% | [ |
表2 近年来报道的固定化酶皮克林乳液反应体系
酶的种类 | 稳定剂/载体 | 酶促反应 | 有机溶剂 | 转化率 | 参考文献 |
---|---|---|---|---|---|
脂肪酶AYS | 介孔碳球 | 植物甾醇和α-亚麻酸的酯化反应 | - | 1.5 h,92% | [ |
脂肪酶CALB | 纳米聚合体PEG-b-P(S-co-TMI) | 1-己醇与己酸的酯化反应 | 甲苯 | 24 h,80% | [ |
脂肪酶 | 海藻酸盐复合粒子E@Alg@s-TiO2 | 1-己醇与己酸的酯化反应 | 正己烷 | 4 h,85-95% | [ |
脂肪酶CALB | 纳米共聚物P(St-co-GMA) | 己醇和己酸的酯化反应 | 庚烷 | 24 h,96.5% | [ |
脂肪酶CALB | 二氧化硅纳米花 | 甲醇和废弃油生产生物柴油 | 环己烷 | 8.11 h,98.5% | [ |
脂肪酶CALB | 功能化多壁碳纳米管MWCNTs-NH2 | 马齿苋种子油和甲醇生产生物柴油 | 正庚烷 | 11.06 h,95.2% | [ |
脂肪酶CALB | 介孔纳米二氧化硅 | 1-己醇与己酸的酯化反应 | 甲苯 | 20 min,88% | [ |
[1] |
Reetz MT. Biocatalysis in organic chemistry and biotechnology:past, present, and future[J]. Journal of the American Chemical Society, 2013,135(34):12480-12496.
URL pmid: 23930719 |
[2] |
Park ES, Shin JS. Biocatalytic cascade reactions for asymmetric synjournal of aliphatic amino acids in a biphasic reaction system[J]. Journal of Molecular Catalysis B:Enzymatic, 2015,121:9-14.
doi: 10.1016/j.molcatb.2015.07.011 URL |
[3] |
Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications[J]. Chemical Society Reviews, 2013,42(15):6236-6249.
doi: 10.1039/c3cs35511j URL |
[4] |
Adlercreutz P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews, 2013,42(15):6406-6436.
URL pmid: 23403895 |
[5] |
Piradashvili K, Alexandrino EM, Wurm FR, et al. Reactions and polymerizations at the liquid-liquid interface[J]. Chemical Reviews, 2015,116(4):2141-2169.
doi: 10.1021/acs.chemrev.5b00567 URL pmid: 26708780 |
[6] |
Wittenboer AVD, Niemeijer B, Karmee SK, et al. Systematic assessment of the stability of benzaldehyde lyase in aqueous-organic biphasic systems and its stabilization by modification with methoxy-poly(ethylene)glycol[J]. Journal of Molecular Catalysis B:Enzymatic, 2010,67(3-4):208-213.
doi: 10.1016/j.molcatb.2010.08.007 URL |
[7] |
Pickering SU. CXCVI. -Emulsions[J]. Journal of the Chemical Society Transactions, 1907,91:2001-2021.
doi: 10.1039/CT9079102001 URL |
[8] |
Berton-Carabin CC, Schroen K. Pickering emulsions for food applications:background, trends, and challenges[J]. Annual Review of Food Science & Technology, 2015,6:263-297.
doi: 10.1146/annurev-food-081114-110822 URL pmid: 25705932 |
[9] |
Zhou W, Fang L, Fan Z, et al. Tunable catalysts for solvent-free biphasic systems:pickering interfacial catalysts over amphiphilic silica nanoparticles[J]. Journal of the American Chemical Society, 2014,136(13):4869-4872.
doi: 10.1021/ja501019n URL |
[10] | Wei L, Zhang M, Zhang X, et al. Pickering emulsion as an efficient platform for enzymatic reactions without stirring[J]. ACS Sustainable Chemistry & Engineering, 2016,4(12):6838-6843. |
[11] |
Pera-Titus M, Leclercq L, Clacens JM, et al. Pickering interfacial catalysis for biphasic systems:from emulsion design to green reactions[J]. Angewandte Chemie International Edition, 2015,54(7):2006-2021.
doi: 10.1002/anie.201402069 URL pmid: 25644631 |
[12] |
Binks B, Lumsdon S. Pickering emulsions stabilized by monodisperse latex particles:effects of particle size[J]. Langmuir, 2001,17(15):4540-4547.
doi: 10.1021/la0103822 URL |
[13] |
Soltani S, Madadlou A. Two-step sequential cross-linking of sugar beet pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels[J]. Carbohydrate Polymers, 2015,136:738-743.
doi: 10.1016/j.carbpol.2015.09.100 URL pmid: 26572407 |
[14] |
Li Q, Xie B, Wang Y, et al. Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion[J]. Food Hydrocolloids, 2019,97:105214.
doi: 10.1016/j.foodhyd.2019.105214 URL |
[15] |
Kresge C, Leonowicz M, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359(6397):710.
doi: 10.1038/359710a0 URL |
[16] |
Zhu G, Li X, Fu X, et al. Electrospinning-based synjournal of highly ordered mesoporous silica fiber for lab-in-syringe enrichment of plasma peptidesf[J]. Chemical Communications, 2012,48(80):9980-9982.
doi: 10.1039/c2cc34761j URL pmid: 22895277 |
[17] |
Ding J, Wu JH, Liu JF, et al. Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization[J]. Plant Methods, 2014,10(1):39.
doi: 10.1186/1746-4811-10-39 URL |
[18] |
Zhu G, He X, Cai B, et al. In-syringe dispersive solid phase extraction:a novel format for electrospun fiber based microextraction[J]. Analyst, 2014,139(23):6266-6271.
doi: 10.1039/c4an01464b URL |
[19] |
Binks B, Lumsdon S. Transitional phase inversion of solid-stabilized emulsions using particle mixtures[J]. Langmuir, 2000,16(8):3748-3756.
doi: 10.1021/la991427q URL |
[20] |
Meng T, Bai R, Wang W, et al. Enzyme-loaded mesoporous silica particles with tuning wettability as a Pickering catalyst for enhancing biocatalysis[J]. Catalysts, 2019,9(1):78.
doi: 10.3390/catal9010078 URL |
[21] |
Ren G, Wang M, Wang L, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions[J]. Langmuir, 2018,34(20):5798-5806.
doi: 10.1021/acs.langmuir.8b00757 URL pmid: 29709197 |
[22] | Dong Z, Liu ZS, Shi J, et al. Carbon nanoparticle-stabilized Pickering emulsion as a sustainable and high-performance interfacial catalysis platform for enzymatic esterification/transesterification[J]. Acs Sustainable Chemistry & Engineering, 2019,7(8):7619-7629. |
[23] |
Diaz de Tuesta JL, Machado BF, Serp P, et al. Janus amphiphilic carbon nanotubes as Pickering interfacial catalysts for the treatment of oily wastewater by selective oxidation with hydrogen peroxide[J]. Catalysis Today, 2019,356:205-215.
doi: 10.1016/j.cattod.2019.07.012 URL |
[24] |
Zhou J, Qiao X, Binks BP, et al. Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles[J]. Langmuir, 2011,27(7):3308-3316.
doi: 10.1021/la1036844 URL pmid: 21344923 |
[25] |
Xie C, Meng S, Xue L, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017,33(49):14139-14148.
doi: 10.1021/acs.langmuir.7b03642 URL pmid: 29148793 |
[26] |
Timgren A, Rayner M, Sjöö M, et al. Starch particles for food based Pickering emulsions[J]. Procedia Food Science, 2011,1:95-103.
doi: 10.1016/j.profoo.2011.09.016 URL |
[27] |
Li SN, Li C, Yang YZ, et al. Starch granules as Pickering emulsifiers:Role of octenylsuccinylation and particle size[J]. Food Chemistry, 2019,283:437-444.
doi: 10.1016/j.foodchem.2019.01.020 URL pmid: 30722895 |
[28] |
Ge S, Xiong L, Li M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles:Influence of starch variety and particle size[J]. Food Chemistry, 2017,234:339-347.
doi: 10.1016/j.foodchem.2017.04.150 URL pmid: 28551245 |
[29] |
Liu F, Tang CH. Soy protein nanoparticle aggregates as Pickering stabilizers for Oil-in-Water Emulsions[J]. Journal of Agricultural and Food Chemistry, 2013,61(37):8888-8898.
URL pmid: 23977961 |
[30] |
Liu F, Tang CH. Soy glycinin as food-grade Pickering stabilizers:Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface[J]. Food Hydrocolloids, 2016,60:606-619.
doi: 10.1016/j.foodhyd.2015.04.025 URL |
[31] |
Ju M, Zhu G, Huang G, et al. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J]. Food Hydrocolloids, 2019,99:105329.
doi: 10.1016/j.foodhyd.2019.105329 URL |
[32] |
Zhang X, Zhou J, Chen J, et al. Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization[J]. Food Hydrocolloids, 2020,100:105440.
doi: 10.1016/j.foodhyd.2019.105440 URL |
[33] |
Zhang X, Liu Y, Wang Y, et al. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions[J]. Food Hydrocolloids, 2019,97:105180.
doi: 10.1016/j.foodhyd.2019.105180 URL |
[34] |
Li Q, Chen P, Li Y, et al. Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant:A bioinspired oxygen protection strategy[J]. Carbohydrate Polymers, 2020,229:115395.
doi: 10.1016/j.carbpol.2019.115395 URL pmid: 31826411 |
[35] |
Yu S, Zhang D, Jiang J, et al. Biphasic biocatalysis using a CO2-switchable Pickering emulsion[J]. Green Chemistry, 2019,21(15):4062-4068.
doi: 10.1039/C8GC03879A URL |
[36] |
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013,42(15):6223-6235.
URL pmid: 23532151 |
[37] |
Wang M, Qi W, Su R, et al. Advances in carrier-bound and carrier-free immobilized nanobiocatalysts[J]. Chemical Engineering Science, 2015,135:21-32.
doi: 10.1016/j.ces.2015.03.051 URL |
[38] |
Wang Z, van Oers MC, Rutjes FP, et al. Polymersome colloidosomes for enzyme catalysis in a biphasic system[J]. Angewandte Chemie International Edition, 2012,51(43):10746-10750.
doi: 10.1002/anie.201206555 URL pmid: 23023929 |
[39] |
Yang X, Wang Y, Bai R, et al. Pickering emulsion-enhanced interfacial biocatalysis:tailored alginate microparticles act as particulate emulsifier and enzyme carrier[J]. Green Chemistry, 2019,21(9):2229-2233.
doi: 10.1039/C8GC03573C URL |
[40] | Wang M, Wang MJ, Zhang SM, et al. Pickering gel emulsion stabilized by enzyme immobilized polymeric nanoparticles:a robust and recyclable biocatalyst system for biphasic catalysis[J]. Reaction Chemistry & Engineering, 2019,4(8):1459-1465. |
[41] |
Wang L, Liu X, Jiang Y, et al. Silica nanoflowers-stabilized Pickering emulsion as a robust biocatalysis platform for enzymatic production of biodiesel[J]. Catalysts, 2019,9(12):1026.
doi: 10.3390/catal9121026 URL |
[42] |
Wang L, Liu X, Jiang Y, et al. Biocatalytic Pickering emulsions stabilized by lipase-immobilized carbon nanotubes for biodiesel production[J]. Catalysts, 2018,8(12):587.
doi: 10.3390/catal8120587 URL |
[43] | Jiang H, Li Y, Hong L, et al. Submicron inverse Pickering emulsions for highly efficient and recyclable enzymatic catalysis[J]. Chemistry-An Asian Journal, 2018,13(22):3533-3539. |
[44] |
Peng L, Feng A, Liu S, et al. Electrochemical stimulated Pickering emulsion for recycling of enzyme in biocatalysi[J]. ACS Applied Materials & Interfaces, 2016,8(43):29203-29207.
URL pmid: 27740743 |
[45] |
Jiang Z, Li X, Yang G, et al. pH-responsive surface activity and solubilization with novel pyrrolidone-based Gemini surfactants[J]. Langmuir, 2012,28(18):7174-7181.
doi: 10.1021/la3008156 URL pmid: 22502732 |
[46] |
Liu M, Chen X, Yang Z, et al. Tunable pickering emulsions with environmentally responsive hairy silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2016,8(47):32250-32258.
doi: 10.1021/acsami.6b11931 URL pmid: 27933833 |
[47] |
Chen Z, Zhou L, Bing W, et al. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis[J]. Journal of the American Chemical Society, 2014,136(20):7498-7504.
doi: 10.1021/ja503123m URL pmid: 24784766 |
[48] |
Zhang Q, Bai RX, Guo T, et al. Switchable Pickering emulsions stabilized by awakened TiO2 nanoparticle emulsifiers using UV/dark actuation[J]. ACS Applied Materials & Interfaces, 2015,7(33):18240-18246.
URL pmid: 26258618 |
[49] |
Chen J, Zhu C, Yang Z, et al. Thermally tunable Pickering emulsions stabilized by carbon-dot-incorporated core-shell nanospheres with fluorescence “On-Off” behavior[J]. Langmuir, 2017,34(1):273-283.
doi: 10.1021/acs.langmuir.7b03490 URL pmid: 29227679 |
[50] |
Zhu Y, Fu T, Liu K, et al. Thermoresponsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene ether nonionic surfactant[J]. Langmuir, 2017,33(23):5724-5733.
doi: 10.1021/acs.langmuir.7b00273 URL pmid: 28510456 |
[51] | Huang J, Yang H. A pH-switched Pickering emulsion catalytic system:high reaction efficiency and facile catalyst recycling[J]. Chem Commun, 2015,51(34):7333-7336. |
[52] |
Tang J, Zhou X, Cao S, et al. Pickering interfacial catalysts with CO2 and magnetic dual response for fast recovering in biphasic reaction[J]. ACS Applied Materials & Interfaces, 2019,11(17):16156-16163.
doi: 10.1021/acsami.9b00821 URL pmid: 30964259 |
[1] | 朱永安, 王淼, 曹静, 喻鹤, 曹振, 金茂俊, 王静, 佘永新. 农药残留检测关键用酶固定化研究进展[J]. 生物技术通报, 2022, 38(1): 258-268. |
[2] | 余薇薇, 杜邦昊, 张敏讷, 万巧玲, 杨硕, 赵晨菊. 环境中自由及结合态雌激素的酶降解转化研究进展[J]. 生物技术通报, 2019, 35(4): 151-162. |
[3] | 韩姝然, 卢磊. 交联酶聚集体的制备及在漆酶固定化中的应用进展[J]. 生物技术通报, 2019, 35(3): 164-170. |
[4] | 茅佳灵, 许琳, 严明. NADP(H)相关的体外合成乳酸途径构建以及性究[J]. 生物技术通报, 2016, 32(9): 260-266. |
[5] | 高启禹, 徐光翠, 陈红丽, 周晨妍. 纳米材料固定化酶的研究进展[J]. 生物技术通报, 2013, 0(6): 20-24. |
[6] | 高启禹, 李宏彬, 陈红丽, 孔雨, 周晨妍. 壳聚糖修饰的PLGA纳米颗粒固定化碱性磷酸单酯酶的技术研究[J]. 生物技术通报, 2013, 0(5): 199-204. |
[7] | 马艳芬;吕生华;刘岗;董凌霄;李芳;王飞;郑新建;. 生物酶催化聚合的研究进展[J]. , 2010, 0(04): 50-54. |
[8] | 王巍杰;杨永强;吴尚卓;. 脂肪酶催化合成生物柴油的研究进展[J]. , 2010, 0(03): 54-57. |
[9] | 戚娜;朱利民;. 5′-核苷酸的合成方法比较[J]. , 2006, 0(S1): 242-245. |
[10] | 邵文海;张先恩;AnthonyE.Cass. 固定化酶的空间取向控制策略[J]. , 2000, 0(03): 25-28. |
[11] | 彭立凤;赵汝淇. 有机介质中酶催化活性和选择性的调控[J]. , 1999, 0(06): 28-32. |
[12] | . 食品上的应用[J]. , 1993, 0(08): 74-80. |
[13] | 孙国凤;. 用固定化酶去除溶解氧保持饮料的品质[J]. , 1993, 0(06): 32-32. |
[14] | 朱遐;. 水净化新进展:清除地下水中的硝酸盐[J]. , 1992, 0(09): 18-19. |
[15] | . 食品上的应用[J]. , 1992, 0(06): 85-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||