生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 174-186.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0831

• 综述与专论 • 上一篇    下一篇

含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展

王琪媛1,3(), 王甲辰2, 叶磊1, 姜帆1()   

  1. 1.北京师范大学生命科学学院,北京 100875
    2.北京农林科学院植物营养与资源研究所,北京 100089
    3.国网(北京)综合能源规划设计研究院有限公司,北京 100082
  • 收稿日期:2020-07-07 出版日期:2021-02-26 发布日期:2021-02-26
  • 作者简介:王琪媛,女,博士,研究方向:植物生理;E-mail: qywang0805@126.com|王甲辰同为本文第一作者
  • 基金资助:
    北京市农林科学院科技创新基金(KJCX20180426);北京市农林科学院院长基金(YZJJ201901)

Research Advances on Enhancement of Plant Resistance to Salinity Stress by Rhizobacteria Containing ACC Deaminase

WANG Qi-yuan1,3(), WANG Jia-chen2, YE Lei1, JIANG Fan1()   

  1. 1. College of Life Science,Beijing Normal University,Beijing 100875
    2. Institute of Plant Nutrition and Resources,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100089
    3. State Grid(Beijing)Integrated Energy Planning and D & R Institute,Beijing 100082
  • Received:2020-07-07 Published:2021-02-26 Online:2021-02-26

摘要:

盐胁迫是抑制植物生长的主要非生物因素之一,高浓度的盐分不利于植物体的生长和发育,严重时会导致植物细胞及植物体死亡。已有大量实验结果显示含ACC脱氨酶的根际细菌可以缓解高盐对植物的危害。ACC脱氨酶可以降解乙烯的直接前体1-氨基环丙烷-1-羧酸(ACC),从而降低胁迫乙烯的合成量。胁迫乙烯是阻碍植物生长的主要原因。首先介绍了根际促生细菌的概念,概括了高盐对植物的毒害作用以及乙烯的生物合成和生理效应,着重阐述了含ACC脱氨酶的根际细菌的作用方式及其提高植物耐盐性的生理机制,以期为这类细菌在农业生产中的应用提供理论支撑。

关键词: 根际促生细菌, 1-氨基环丙烷-1-羧酸脱氨酶, 盐胁迫, 乙烯

Abstract:

Salinity is a major factor inhibiting plant growth. High concentration salinity is adverse to the growth and development of plants,and even leads to plant death when at serious level. A large number of experimental results have shown that the rhizobacteria containing ACC-deaminase may alleviate hazards of the high salinity to plants. The ACC-deaminase degrades ACC(1-aminocyclopropane-1-carboxylic acid,the precursor of ethylene in all higher plants),which results in the decrease of the synthesis of stressed ethylene. The stressed ethylene is the major cause to retard plant growth. In this review,we provided the concept of the plant growth-promoting rhizobacteria(PGPR),overviewed the toxic effects of high salinity on plants,the biosynthesis and physiological effects of ethylene,and emphatically elaborated the physiological mechanisms of underlying the ACC deaminase-containing rhizobacteria and improving plant tolerance to the high salinity. It is aimed to provide the theoretical support for the application of this type of bacterium in agriculture in the coming years.

Key words: plant growth-promoting rhizobacteria(PGPR), ACC deaminase, salinity stress, ethylene