生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 174-186.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0831
收稿日期:
2020-07-07
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
王琪媛,女,博士,研究方向:植物生理;E-mail: 基金资助:
WANG Qi-yuan1,3(), WANG Jia-chen2, YE Lei1, JIANG Fan1()
Received:
2020-07-07
Published:
2021-02-26
Online:
2021-02-26
摘要:
盐胁迫是抑制植物生长的主要非生物因素之一,高浓度的盐分不利于植物体的生长和发育,严重时会导致植物细胞及植物体死亡。已有大量实验结果显示含ACC脱氨酶的根际细菌可以缓解高盐对植物的危害。ACC脱氨酶可以降解乙烯的直接前体1-氨基环丙烷-1-羧酸(ACC),从而降低胁迫乙烯的合成量。胁迫乙烯是阻碍植物生长的主要原因。首先介绍了根际促生细菌的概念,概括了高盐对植物的毒害作用以及乙烯的生物合成和生理效应,着重阐述了含ACC脱氨酶的根际细菌的作用方式及其提高植物耐盐性的生理机制,以期为这类细菌在农业生产中的应用提供理论支撑。
王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186.
WANG Qi-yuan, WANG Jia-chen, YE Lei, JIANG Fan. Research Advances on Enhancement of Plant Resistance to Salinity Stress by Rhizobacteria Containing ACC Deaminase[J]. Biotechnology Bulletin, 2021, 37(2): 174-186.
细菌种类 | 植物 | 处理条件 | 参考文献 |
---|---|---|---|
皮氏无色杆菌(Achromobacter piechaudii) | 番茄(Tomato) | 0-172 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens) | 落花生(Groundnut) | 120 mmol/L NaCl | [ |
恶臭假单胞菌UW4(Pseudomonas putida UW4) | 油菜(Canola) | 1 mol/L NaCl at 10℃,1 mmol/L NaCl at 20℃ | [ |
恶臭假单胞菌N21(Pseudomonas putida N21),绿脓假单胞菌N39(Pseudomonas aeruginosa N39),变形斑沙雷菌M35(Serratia proteamaculans M35) | 小麦(Triticum aestivum) | Electrical conductivity 1,5,10,15 dS/m | [ |
荧光假单胞菌(Pseudomonas fluorescens),恶臭假单胞菌(Pseudomonas putida) | 油菜(Canola) | Electrical conductivity 11,22 dS/m | [ |
恶臭假单胞菌UW4(Pseudomonas putida UW4) | 黄瓜(Cucumber) | 0-200 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens) | 黄瓜(Cucumber)、番茄(Tomato) | 659 ms/m | [ |
碘短杆菌(Brevibacterium iodinum),地衣芽孢杆菌(Bacillus licheniformis) | 红辣椒(Red pepper) | 100-200 mmol/L NaCl | [ |
门多萨假单胞菌(Pseudomonas mendocina) | 番茄(Tomato) | 172-207 mmol/L NaCl | [ |
假单胞菌株VS1(Pseudomonas sp. VS1) | 大豆(Soybean) | 200 mmol/L NaCl | [ |
鹰嘴豆中慢生根瘤菌(Mesorhizobium ciceri) | 鹰嘴豆(Chickpea) | 0.15% NaCl | [ |
花生根瘤菌(Bradyrhizobium sp.),肠杆菌属(Enterobacter sp.),金黄杆菌属(Chryseobacterium sp.) | 绿豆(Mung bean)、豆(Bean)、花生(Peanut) | 50 mmol/L NaCl | [ |
丁香假单胞菌(Pseudomonas syringae),荧光假单胞菌(Pseudomonas fluorescens) | 绿豆(Mung bean) | Electrical conductivity 4-12 dS/m | [ |
产酸克雷伯菌(Klebsiella oxytoca) | 棉花(Cotton) | 1.3-3.5 g NaCl / kg soil | [ |
恶臭假单胞菌(Pseudomonas putida),皱褶假单胞菌(Pseudomonas corrugata) | 大麦(Barley)、燕麦(oats) | Electrical conductivity 9.4 dS/m | [ |
芽孢杆菌(Bacillus),节杆菌(Arthrobacter),链霉菌(Streptomyces),白蚁菌(Isoptericola) | 中华补血草(Limonium sinense Kuntze) | 0-250 mmol/L NaCl | [ |
肠杆菌(Enterobacter sp.) | 番茄(Tomato),拟南芥(Arabidopsis) | 200 mmol/L NaCl | [ |
恶臭假单胞菌(Pseudomonas putida) | 番茄(Tomato) | 0-190 mmol/L NaCl | [ |
原玻璃蝇节杆菌(Arthrobacter protophormiae) | 豌豆(Pisum sativum L.) | 100,200 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens),米氏假单胞菌(Pseudomonas migulae) | 番茄(Tomato) | 0-185 mmol/L NaCl | [ |
施氏假单胞菌(Pseudomonas stutzeri) | 水稻(Rice) | 120 mmol/L,2000 mmol/L NaCl | [ |
重氮营养哈特曼杆菌(Hartmannibacter diazotrophicus) | 大麦(Barley) | 200,400 mmol/L NaCl | [ |
表皮短杆菌(Brevibacterium epidermidis),阿氏芽孢杆菌(Bacillus aryabhattai) | 油菜(Canola) | 120 mmol/L NaCl | [ |
草螺菌(Herbaspirillum sp.) | 大白菜(Chinese cabbage) | 0,150 mmol/L NaCl | [ |
争论贪噬菌(Variovorax paradoxus) | 豌豆(Pisum sativum L.) | 70,130 mmol/L NaCl | [ |
假单胞菌(Pseudomonas spp.) | 番茄(Tomato) | 0,75 mmol/L NaCl | [ |
肠杆菌EN-21(Enterobacter sp. EN-21) | 甘蔗(Sugarcane) | 200 mmol/L NaCl | [ |
简单芽胞杆菌UT1(Bacillus simplex UT1) | 小麦(Triticum aestivum) | 10,20 mg/mL NaCl | [ |
巨大芽胞杆菌STB1(Bacillus megaterium STB1) | 番茄(Tomato) | 200 mmol/L NaCl | [ |
表1 含ACC 脱氨酶的根际细菌提高植物耐盐性的主要相关文献列表
细菌种类 | 植物 | 处理条件 | 参考文献 |
---|---|---|---|
皮氏无色杆菌(Achromobacter piechaudii) | 番茄(Tomato) | 0-172 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens) | 落花生(Groundnut) | 120 mmol/L NaCl | [ |
恶臭假单胞菌UW4(Pseudomonas putida UW4) | 油菜(Canola) | 1 mol/L NaCl at 10℃,1 mmol/L NaCl at 20℃ | [ |
恶臭假单胞菌N21(Pseudomonas putida N21),绿脓假单胞菌N39(Pseudomonas aeruginosa N39),变形斑沙雷菌M35(Serratia proteamaculans M35) | 小麦(Triticum aestivum) | Electrical conductivity 1,5,10,15 dS/m | [ |
荧光假单胞菌(Pseudomonas fluorescens),恶臭假单胞菌(Pseudomonas putida) | 油菜(Canola) | Electrical conductivity 11,22 dS/m | [ |
恶臭假单胞菌UW4(Pseudomonas putida UW4) | 黄瓜(Cucumber) | 0-200 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens) | 黄瓜(Cucumber)、番茄(Tomato) | 659 ms/m | [ |
碘短杆菌(Brevibacterium iodinum),地衣芽孢杆菌(Bacillus licheniformis) | 红辣椒(Red pepper) | 100-200 mmol/L NaCl | [ |
门多萨假单胞菌(Pseudomonas mendocina) | 番茄(Tomato) | 172-207 mmol/L NaCl | [ |
假单胞菌株VS1(Pseudomonas sp. VS1) | 大豆(Soybean) | 200 mmol/L NaCl | [ |
鹰嘴豆中慢生根瘤菌(Mesorhizobium ciceri) | 鹰嘴豆(Chickpea) | 0.15% NaCl | [ |
花生根瘤菌(Bradyrhizobium sp.),肠杆菌属(Enterobacter sp.),金黄杆菌属(Chryseobacterium sp.) | 绿豆(Mung bean)、豆(Bean)、花生(Peanut) | 50 mmol/L NaCl | [ |
丁香假单胞菌(Pseudomonas syringae),荧光假单胞菌(Pseudomonas fluorescens) | 绿豆(Mung bean) | Electrical conductivity 4-12 dS/m | [ |
产酸克雷伯菌(Klebsiella oxytoca) | 棉花(Cotton) | 1.3-3.5 g NaCl / kg soil | [ |
恶臭假单胞菌(Pseudomonas putida),皱褶假单胞菌(Pseudomonas corrugata) | 大麦(Barley)、燕麦(oats) | Electrical conductivity 9.4 dS/m | [ |
芽孢杆菌(Bacillus),节杆菌(Arthrobacter),链霉菌(Streptomyces),白蚁菌(Isoptericola) | 中华补血草(Limonium sinense Kuntze) | 0-250 mmol/L NaCl | [ |
肠杆菌(Enterobacter sp.) | 番茄(Tomato),拟南芥(Arabidopsis) | 200 mmol/L NaCl | [ |
恶臭假单胞菌(Pseudomonas putida) | 番茄(Tomato) | 0-190 mmol/L NaCl | [ |
原玻璃蝇节杆菌(Arthrobacter protophormiae) | 豌豆(Pisum sativum L.) | 100,200 mmol/L NaCl | [ |
荧光假单胞菌(Pseudomonas fluorescens),米氏假单胞菌(Pseudomonas migulae) | 番茄(Tomato) | 0-185 mmol/L NaCl | [ |
施氏假单胞菌(Pseudomonas stutzeri) | 水稻(Rice) | 120 mmol/L,2000 mmol/L NaCl | [ |
重氮营养哈特曼杆菌(Hartmannibacter diazotrophicus) | 大麦(Barley) | 200,400 mmol/L NaCl | [ |
表皮短杆菌(Brevibacterium epidermidis),阿氏芽孢杆菌(Bacillus aryabhattai) | 油菜(Canola) | 120 mmol/L NaCl | [ |
草螺菌(Herbaspirillum sp.) | 大白菜(Chinese cabbage) | 0,150 mmol/L NaCl | [ |
争论贪噬菌(Variovorax paradoxus) | 豌豆(Pisum sativum L.) | 70,130 mmol/L NaCl | [ |
假单胞菌(Pseudomonas spp.) | 番茄(Tomato) | 0,75 mmol/L NaCl | [ |
肠杆菌EN-21(Enterobacter sp. EN-21) | 甘蔗(Sugarcane) | 200 mmol/L NaCl | [ |
简单芽胞杆菌UT1(Bacillus simplex UT1) | 小麦(Triticum aestivum) | 10,20 mg/mL NaCl | [ |
巨大芽胞杆菌STB1(Bacillus megaterium STB1) | 番茄(Tomato) | 200 mmol/L NaCl | [ |
[1] | Flowers TJ, Galal HK, Bromham L. Evolution of halophytes:multiple origins of salt tolerance in land plants[J]. Functional Plant Biology, 2010,37:604-612. |
[2] | Shabala S. Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of Botany, 2013,112(7):65-69. |
[3] | 王越, 赵辉, 马凤江, 彭殿林. 盐碱地与耐盐碱牧草[J]. 山西农业科学, 2006,34(1):55-57. |
W Y, Zhao H, Ma FJ, et al. Saline-alkali soil and saline-tolerant herbage[J]. Shanxi Agriculture Science, 2006,34(1):55-57. | |
[4] | 刘永信, 王玉珍. 盐碱地区域化种植耐盐植物可行性研究[J]. 宁夏农林科技, 2011,52(5):49-50. |
Liu YX, Wang YZ. Study on the feasibility of planting salt-tolerant plants in saline-alkali land[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011,52(5):49-50. | |
[5] | Roy SJ, Negrão S, Tester M. Salt resistant crop plants[J]. Current Opinion Biotechnology, 2014,26:115-124. |
[6] | Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review[J]. Microbiology Research, 2018,209:21-32. |
[7] |
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 2014,169:30-39.
doi: 10.1016/j.micres.2013.09.009 URL |
[8] |
Orozco-Mosqueda MC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria(PGPB):An efficient mechanism to counter salt stress in crops[J]. Microbiological Research, 2020,235:126439.
doi: 10.1016/j.micres.2020.126439 URL pmid: 32097862 |
[9] |
Forni C, Duca D, Glick BR. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria[J]. Plant Soil, 2017,410:335-356.
doi: 10.1007/s11104-016-3007-x URL |
[10] |
Etesamia H, Maheshwarib DK. Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture:action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018,156:225-246.
doi: 10.1016/j.ecoenv.2018.03.013 URL pmid: 29554608 |
[11] | Belimov AA, Hontzeas N, Safronova VI, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern. )[J]. Soil Biology and Biochemistry, 2005,37:241-250. |
[12] |
Sheehy RE, Honma M, Yamada M, et al. Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase[J]. Journal of Bacteriology, 1991,173(17):5260-5265.
doi: 10.1128/jb.173.17.5260-5265.1991 URL pmid: 1885510 |
[13] |
Shah S, Li J, Moatt BA, et al. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria[J]. Canadian Journal of Microbiology, 1998,44(9):833-845.
URL pmid: 9851025 |
[14] |
Hontzeas N, Hontzeas CE, Glick BR. Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase[J]. Biotechnology Advances, 2006,24(4):420-426.
URL pmid: 16524684 |
[15] |
Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology Biochemistry, 2004,42(6):565-572.
doi: 10.1016/j.plaphy.2004.05.009 URL pmid: 15246071 |
[16] |
Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology, 1998,190(1):63-68.
doi: 10.1006/jtbi.1997.0532 URL pmid: 9473391 |
[17] |
Jackson MB, Osborne DJ. Ethylene, the natural regulator of leaf abscission[J]. Nature, 1970,225(5237):1019-1022.
doi: 10.1038/2251019a0 URL pmid: 16056901 |
[18] | Abeles FB, Morgan PW, Saltveit ME. Roles and physiological effects of ethylene in plant physiology:dormancy, growth, and development[M]//Ethylene in Plant Biology. San Diegeo: Academic Press, 1992,23(3-4):120-181. |
[19] | Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2003,16(16):1-18. |
[20] | Crocker W. The effect of ethylene upon living organisms[J]. Proceedings of the American Philosophical Society, 1932,71(5):295-298. |
[21] |
Gazzarrini S, Mccourt P. Cross-talk in plant hormone signalling:What Arabidopsis mutants are telling us[J]. Annals of Botany, 2003,91(6):605-612.
doi: 10.1093/aob/mcg064 URL pmid: 12714359 |
[22] |
Kapulnik Y, Resnick N, Gati EM, et al. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis[J]. Journal of Experimental Botany, 2011,62(8):2915-2924.
URL pmid: 21307387 |
[23] |
Arraes FBM, Beneventi MA, Lisei de SME, et al. Implications of ethylene biosynjournal and signaling in soybean drought stress tolerance[J]. BMC Plant Biology, 2015,15:213.
doi: 10.1186/s12870-015-0597-z URL pmid: 26335593 |
[24] |
Veloccia A, Fattorini L, Della RF, et al. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2016,67(22):6445-6458.
URL pmid: 27831474 |
[25] | Tian QY, Sun P, Zhang WH. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009,184:918-931. |
[26] |
Vaseva II, Qudeimat E, Potuschak T, et al. The plant hormone ethylene restricts Arabidopsis growth via the epidermis[J]. Proc Natl Acad Sci USA, 2018,115(17):E4130-E4139.
doi: 10.1073/pnas.1717649115 URL pmid: 29643073 |
[27] | Tanaka Y, Sano T, Tamaoki M, et al. Ethylene inhibits abscisic acid - induced stomatal closure in Arabidopsis[J]. Plant Physiology, 2005,138:2337-2343. |
[28] |
Chen L, Dodd IC, Davies WJ, et al. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves[J]. Plant, Cell and Environment, 2013,36:1850-1859.
doi: 10.1111/pce.12094 URL pmid: 23488478 |
[29] | Bueso E, Alejandro S, Carbonell P, et al. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene[J]. Plant Journal, 2008,52(6):1052-1065. |
[30] |
Mcmichael BL, Jordan WR, Powell RD. An effect of water stress on ethylene production by intact cotton petioles[J]. Plant Physiology, 1972,49(4):658.
doi: 10.1104/pp.49.4.658 URL pmid: 16658022 |
[31] | Balota M, Cristescu S, Payne WA, et al. Ethylene production of two wheat cultivars exposed to desiccation, heat, and paraquat-induced oxidation[J]. Crop Science, 2004,44(3):812-818. |
[32] | Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers[J]. Plant Science, 2004,166(2):525-530. |
[33] |
Munne-Bosch S, Penuelas J, Asensio D, et al. Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress[J]. Plant Physiology, 2004,136(2):2937-2947.
doi: 10.1104/pp.104.050005 URL pmid: 15448201 |
[34] |
Botella JR, Arteca RN, Frangos JA. A mechanical strain-induced 1-aminocyclopropane-1-carboxylic acid synthase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(5):1595.
doi: 10.1073/pnas.92.5.1595 URL pmid: 7878024 |
[35] | Rodecap KD, Tingey DT, Tibbs JH. Cadmium-induced ethylene production in bean plants[J]. Zeitschrift Fü Pflanzenphysiologie, 1981,105(1):65-74. |
[36] |
Fuhrer J. Ethylene biosynjournal and cadmium toxicity in leaf tissue of beans(Phaseolus vulgaris L.)[J]. Plant Physiology, 1982,70(1):162-167.
doi: 10.1104/pp.70.1.162 URL pmid: 16662438 |
[37] |
Burd GI, Dixon DG, Glick BR. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings[J]. Applied and Environmental Microbiology, 1998,64(10):3663-3668.
URL pmid: 9758782 |
[38] | Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, et al. Cadmium effect on oxidative metabolism of pea(Pisum sativum L.)roots imaging of reactive oxygen species and nitric oxide accumulation in vivo[J]. Plant Cell and Environment, 2006: 1532-1544. |
[39] | Cronshaw DK, Pegg GF. Ethylene as a toxin synergist in verticillium, wilt of tomato[J]. Physiologial Plant Pathology, 1976,9(9):33-44. |
[40] | Hyodo H, Tanaka K, Suzuki T. Wound-induced ethylene synjournal and its involvement in enzyme induction in mesocarp tissue of Cucurbita maxima[J]. Postharvest Biology and Technology, 1991,1(2):127-136. |
[41] | Loon LCV. Regulation of pathogenesis and symptom expression in diseased plants by ethylene[M] // Fuchs Y, Chalutz E, Ethylene. Springer Netherlands, 1984: 171-180. |
[42] | Glick BR, Cheng ZY, Czarny J, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. European of Journal Plant Pathology, 2007,119:329-339. |
[43] | Kende H, Hoffmannbenning S, Sauter M. The role of ethylene in regulating growth of deepwater rice[M] //Pech JC, Latché A, Balagué C. Cellular and molecular aspects of the plant hormone ethylene. Dordrecht, Netherlands:Dordrecht Springer, 1993: 329-334. |
[44] | Robert F, Autar K, Mattoo D. Ethylene-Biosynjournal and perception[J]. Critical Reviews in Plant Sciences, 1996,15(5-6):479-524. |
[45] |
Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members[J]. Plant Physiology, 2004,136(2):2982.
doi: 10.1104/pp.104.049999 URL pmid: 15466221 |
[46] |
Klee HJ, Hayford MB, Kretzmer KA, et al. Control of ethylene synjournal by expression of a bacterial enzyme in transgenic tomato plants[J]. Plant Cell, 1991,3(11):1187-1193.
doi: 10.1105/tpc.3.11.1187 URL pmid: 1821764 |
[47] |
Robison MM, Griffith M, Pauls KP, et al. Dual role for ethylene in susceptibility of tomato to Verticillium Wilt[J]. Journal of Phytopathology, 2001,149(8):385-388.
doi: 10.1111/j.1439-0434.2001.tb03867.x URL |
[48] | 赵可夫. 植物抗盐生理[M]. 北京: 中国科学技术出版社, 1993. |
Zhao KF. Plant salt resistance physiology[M]. Beijing: China Science and Technology Press, 1993. | |
[49] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59(1):651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 URL |
[50] |
Ranjbarfordoei A, Samson R, Lemeur R, et al. Effects of osmotic drought stress induced by a combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistacia khinjuk and P. mutica[J]. Photosynthetica, 2002,40(2):165-169.
doi: 10.1023/A:1021377103775 URL |
[51] | Dogan M, Tipirdamaz R, Demir Y. Salt resistance of tomato species grown in sand culture[J]. Plant, Soil and Environment, 2010,56:499-507. |
[52] | Karimi G, Ghorbanli M, Heidari H, et al. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate[J]. Biologia Plantarum, 2005,49:301-304. |
[53] | Wei WX, Bilsborrow PE, Hooley DA, et al. Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise[J]. Plant and Soil, 2003,250:183-191. |
[54] |
Wang B, Lüttge U, Ratajczak R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L.[J]. Journal of Plant Physiology, 2004,161(3):285-293.
doi: 10.1078/0176-1617-01123 URL pmid: 15077627 |
[55] |
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012,63(4):1593-1608.
URL pmid: 22291134 |
[56] | Feng JN, Barker AV. Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses II[J]. Journal of Plant Nutrition, 1992,15:2471-2490. |
[57] |
Albacete A, Ghanem ME, Martínez-Andújar C, et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinised tomato(Solanum lycopersicum L.)plants[J]. Journal of Experimental Botany, 2008,59:4119-4131.
URL pmid: 19036841 |
[58] | Lycoskoufis IH, Savvas D, Mavrogianopoulos G. Growth, gas exchange, and nutrient status in pepper(Capsicum annuum L.)grown in recirculating nutrient solution as affected by salinity imposed to half of the root system[J]. Scientia Horticulture, 2005,106(2):147-161. |
[59] |
Amor FMD, Cuadracrespo P. Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper[J]. Functional Plant Biology, 2012,39(1):82-93.
URL pmid: 32480762 |
[60] | Groppa MD, Benavides MP, Zawoznik MS. Root hydraulic conductance, aquaporins and plant growth promoting microorganisms:a revision[J]. Applied Soil Ecology, 2012,61:247-254. |
[61] | Li YS, Mao XT, Tian QY, et al. Phosphorus deficiency induced reduction in root hydraulic conductivity in Medicago falcate is associated with ethylene production[J]. Environmental and Experimental Botany, 2009,67(1):172-177. |
[62] |
Wang QY, Dodd IC, Belimov AA, et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynjournal of pea plants under salt stress by limiting Na+ accumulation[J]. Functional Plant Biology, 2016,43:161-172.
URL pmid: 32480450 |
[63] | Qing BU, Wang YH, Han LY, et al. Characteristics of water absorption by Atriplex triangularis roots under salt stress[J]. Chinese Journal of Ecology, 2007,26(10):1585-1589. |
[64] | Bal HB, Nayak L, Das S, et al. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress[J]. Plant and Soil, 2013,366(1):93-105. |
[65] |
Nadeem SM, Zahir ZA, Naveed M, et al. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity[J]. Canadian Journal of Microbiology, 2007,53(10):1141-1149.
URL pmid: 18026206 |
[66] |
Zhang H, Kim MS, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant Microbe Interactions, 2008,21:737-744.
doi: 10.1094/MPMI-21-6-0737 URL pmid: 18624638 |
[67] | Quadros PDD, Roesch LFW, Silva PRFD, et al. Field agronomic performance of maize hybrids inoculated with Azospirillum[J]. Revista Ceres, 2014,61(2):209-218. |
[68] | Kohler J, Hernández JA, Caravaca F, et al. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J]. Environmental and Experimental Botany, 2009,65(2):245-252. |
[69] | Nadeem SM, Zahir ZA, Naveed M, et al. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions[J]. Annals of Microbiology, 2013,63(1):225-232. |
[70] | Rojas-Tapias DF, Bonilla RR, Dussán J. Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers[J]. Water Air and Soil Pollution, 2012,223(2):643-651. |
[71] |
Shi H, Quintero FJ, Pardo JM, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants[J]. The Plant Cell, 2002,14(2):465-477.
doi: 10.1105/tpc.010371 URL pmid: 11884687 |
[72] |
Fu Q, Liu C, Ding N, et al. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant(Solanum melongena L.)seedlings under salt stress[J]. Agricultural Water Management, 2010,97(12):1994-2000.
doi: 10.1016/j.agwat.2010.02.003 URL |
[73] |
Yao L, Wu Z, Zheng Y, et al. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton[J]. European Journal of Soil Biology, 2010,46(1):49-54.
doi: 10.1016/j.ejsobi.2009.11.002 URL |
[74] |
Surekha C, Kumari KN, Aruna LV, et al. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeon pea enhances proline accumulation and salt tolerance[J]. Plant Cell, Tissue and Organ Culture, 2014,116(1):27-36.
doi: 10.1007/s11240-013-0378-z URL |
[75] |
Nia SH, Zarea MJ, Rejali F, et al. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum, strains from saline or non-saline soil[J]. Journal of the Saudi Society of Agricultural Sciences, 2012,11(2):113-121.
doi: 10.1016/j.jssas.2012.02.001 URL |
[76] |
Wang W, Wu Z, He Y, et al. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang[J]. Ecotoxicology and Environmental Safety, 2018,164:520-529.
doi: 10.1016/j.ecoenv.2018.08.070 URL pmid: 30149350 |
[77] |
Sziderics AH, Rasche F, Trognitz F, et al. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants(Capsicum annuum L.)[J]. Canadian Journal of Microbiology, 2007,53:1195-1202.
URL pmid: 18026213 |
[78] |
Shahid M, Akram MS, Khan MA, et al. A phytobeneficial strain Planomicrobium sp. MSSA-10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment[J]. Journal of Applied Microbiology, 2018,124:1566-1579.
doi: 10.1111/jam.13732 URL pmid: 29444380 |
[79] | Heydarian Z, Gruber M, Glick BR, et al. Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acdS gene[J]. Frontier Microbiology, 2018,9:1297. |
[80] |
Singh RP, Jha PN. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J]. Frontiers in Microbiology, 2017,8:1945.
URL pmid: 29062306 |
[81] |
Habib SH, Kausar H, Saud HM. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes[J]. Biomed Research International, 2016. DOI: 10.1155/2016/6284547.
doi: 10.1155/2021/8850656 URL pmid: 33604387 |
[82] |
Huan L, Gao S, Xie XJ, et al. Specific photosynthetic and morphological characteristics allow macroalgae Gloiopeltis furcate(Rhodophyta)to survive in unfavorable conditions[J]. Photosynthetica, 2014,52(2):281-287.
doi: 10.1007/s11099-014-0026-9 URL |
[83] |
Flowers T, Yeo A. Variability in the resistance of sodium chloride salinity within rice(Oryza sativa L.)varieties[J]. New Phytologist, 1981,88(2):363-373.
doi: 10.1111/nph.1981.88.issue-2 URL |
[84] |
Win KT, Tanaka F, Okazaki K, et al. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants[J]. Plant Physiology and Biochemistry, 2018,127:599-607.
doi: 10.1016/j.plaphy.2018.04.038 URL pmid: 29730579 |
[85] |
Ali S, Charles TC, Glick BR. Amelioration of damages caused by high salinity stress by plant growth-promoting bacterial endophytes[J]. Plant Physiology Biochemistry, 2014,80:160-167.
doi: 10.1016/j.plaphy.2014.04.003 URL pmid: 24769617 |
[86] | Pourbabaee AA, Bahmani E, Alikhani HA, et al. Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase[J]. JAST, 2016,18(3):855-864. |
[87] |
Reinbothe S, Reinbothe C. Regulation of chlorophyll biosynjournal in angiosperms[J]. Plant Physiology, 1996,111(1):1-7.
doi: 10.1104/pp.111.1.1 URL pmid: 12226272 |
[88] | Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression[J]. Photosynjournal Research, 2002,71(3):185-194. |
[89] |
Kang SM, Shahzad R, Bilal S, et al. Indole3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation[J]. BMC Microbiology, 2019,19(1):80.
URL pmid: 31023221 |
[90] | Tiwari G, Duraivadivel P, Sharma S, et al. 1-Aminocyclopropane-1carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress[J]. Scientific Report, 2018,8(1):1-12. |
[91] | Orozco-Mosqueda M, Duan J, DiBernardo M, et al. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress[J]. Frontier Microbiology, 2019,10:1392. |
[92] |
Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut(Arachis hypogea)plants[J]. Journal of Applied Microbiology, 2007,102:1283-1292.
doi: 10.1111/j.1365-2672.2006.03179.x URL pmid: 17448163 |
[93] |
Cheng Z, Park E, Glick BR. 1-aminocyclopropane-1-carboxylate(ACC)deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt[J]. Canadian Journal of Microbiology, 2007,53:912-918.
doi: 10.1139/W07-050 URL pmid: 17898846 |
[94] |
Zahir A, Ghani U, Naveed M, et al. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat(Triticum aestivum L.)under salt-stressed conditions[J]. Archives of Microbiology, 2009,191:415-24.
URL pmid: 19255743 |
[95] |
Jalili F, Khavazi K, Pazira E, et al. Isolation and characterization of ACC deaminase-producing Fluorescent pseudomonads, to alleviate salinity stress on canola(Brassica napus L.)growth[J]. Journal of Plant Physiology, 2009,166:667-674.
doi: 10.1016/j.jplph.2008.08.004 URL pmid: 18829132 |
[96] |
Gamalero E, Berta G, Massa N, et al. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions[J]. Journal of Applied Microbiology, 2010,108:236-245.
URL pmid: 19566717 |
[97] |
Egamberdieva D, Kucharova Z, Davranov K, et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils[J]. Biology Fertility Soils, 2011,47:197-205.
doi: 10.1007/s00374-010-0523-3 URL |
[98] |
Cho ST, Chang HH, Egamberdieva D, et al. Genome analysis of Pseudomonas fluorescens PCL1751:a rhizobacterium that controls root diseases and alleviates salt stress for its plant host[J]. PLoS One, 2015. DOI: 10.1371/journal.pone.0140231.
doi: 10.1371/journal.pone.0247457 URL pmid: 33626090 |
[99] |
Siddikee MA, Glick BR, Chauhan PS, et al. Enhancement of growth and salt tolerance of red pepper seedlings(Capsicum annuum L.)by regulating stress ethylene synjournal with halotolerant bacteria containing ACC deaminase activity[J]. Plant Physiology Biochemistry, 2011,49:427-434.
doi: 10.1016/j.plaphy.2011.01.015 URL pmid: 21300550 |
[100] | Sadrnia M, Maksimava N, Khromsova E, et al. Study of the effect of bacterial 1-aminocyclopropane-1-carboxylte deaminase(ACC deaminase)on resistance to salt stress in tomato plant[J]. Anal Univ Oradea Fas Biol, 2011,18:120-123. |
[101] |
Kasotia A, Jain S, Vaishnav A, et al. Soybean growth promotion by Pseudomonas sp. strain VS1 under salt stress[J]. Pakistan Journal of Biological Sciences, 2012,15:698-701.
URL pmid: 24171253 |
[102] | Brígido C, Nascimento F, Duan J, et al. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea[J]. FEMS Microbiology Letter, 2013,349:46-53. |
[103] |
Tittabutr P, Piromyou P, Longtonglang A, et al. Alleviation of the effect of environmental stresses using co-inoculation of mung bean by Bradyrhizobium and rhizobacteria containing stress induced ACC deaminase enzyme[J]. Soil Science and Plant Nutrition, 2013,59:559-571.
doi: 10.1080/00380768.2013.804391 URL |
[104] | Ahmad M, Zahir ZA, Nazli F, et al. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean(Vigna radiata L.)[J]. Brazilian Journal of Microbiolgy, 2013,44:1341-1348. |
[105] |
Yue H, Mo W, Li C, et al. The salt stress relief and growth promotion effect of Rs-5 on cotton[J]. Plant Soil, 2007,297:139-145.
doi: 10.1007/s11104-007-9327-0 URL |
[106] |
Liu Y, Shi Z, Yao L, et al. Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress[J]. Journal of General and Applied Microbiology, 2013,59:59-65.
doi: 10.2323/jgam.59.59 URL |
[107] |
Chang P, Gerhardt KE, Huang XD, et al. Plant growth-promoting bacteria that contain ACC deaminase facilitate the growth of barley and oats in salt-impacted soil:potential for phytoremediation of saline soils[J]. International Journal of Phytoremediation, 2014,16:1133-1147.
doi: 10.1080/15226514.2013.821447 URL pmid: 24933907 |
[108] |
Qin S, Zhang YJ, Yuan B, et al. Isolation of ACC deaminase-producing habitat adapted symbiotic bacteria associated with halophyte Limonium sinense(Girard)Kuntze and evaluating their plant growth-promoting activity under salt stress[J]. Plant Soil, 2014,374:753-766.
doi: 10.1007/s11104-013-1918-3 URL |
[109] |
Kim K, Jang YJ, Lee SM, et al. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants[J]. Molecular Cells, 2014,37:109-117.
doi: 10.14348/molcells.2014.2239 URL |
[110] |
Yan J, Smith MD, Glick BR, et al. Effects of ACC deaminase-containing rhizobacteria on plant growth and expression of toc GTPases in tomato(Solanum lycopersicum)under salt stress[J]. Botany, 2014,92:775-781.
doi: 10.1139/cjb-2014-0038 URL |
[111] |
Barnawal D, Bharti N, Maji D, et al. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum[J]. Journal of Plant Physiology, 2014,171:884-894.
doi: 10.1016/j.jplph.2014.03.007 URL pmid: 24913045 |
[112] |
Han Y, Wang R, Yang Z, et al. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J]. Journal of Microbiology Biotechnology, 2015,25:1119-1128.
doi: 10.4014/jmb.1412.12053 URL pmid: 25674802 |
[113] |
Suarez C, Cardinale M, Ratering S, et al. Plant growth promoting effects of Hartmannibacter diazotrophicus on summer barley(Hordeum vulgare L.)under salt stress[J]. Applied Soil Ecology, 2015,95:23-30.
doi: 10.1016/j.apsoil.2015.04.017 URL |
[114] |
Siddikee MA, Sunderem S, Chandrasekaran M, et al. Halotolerant bacteria with ACC deaminase activity alleviate salt stress in canola seed germination[J]. Journal of Korean Society for Applied Biological Chemistry, 2015,58:237-241.
doi: 10.1007/s13765-015-0025-y URL |
[115] |
Lee GW, Lee KJ, Chae JC. Herbaspirillum sp. Strain GW103 alleviates salt stress Brassica rapa L. ssp. pekinensis[J]. Protoplasma, 2015. DOI: 10.1007/s00709-015-0872-8.
doi: 10.1007/s00709-021-01608-2 URL pmid: 33471226 |
[116] |
Kruasuwan W, Thamchaipenet A. 1-Aminocyclopropane-1-carboxylate(ACC)deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 modulates salt-stress response in sugarcane[J]. Journal of Plant Growth Regulation, 2018,37:849-858.
doi: 10.1007/s00344-018-9780-4 URL |
[117] |
Zhang SW, Gan YT, Xu BL. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress[J]. BMC Plant Biology, 2019,19:22.
doi: 10.1186/s12870-018-1618-5 URL pmid: 30634903 |
[118] |
Nascimento FX, Hernández AG, Glick BR, et al. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest[J]. Biotechnology Reports, 2020,25:e00406.
doi: 10.1016/j.btre.2019.e00406 URL pmid: 31886139 |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[3] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[4] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[5] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[6] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[7] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[8] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[9] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[10] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[11] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
[12] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
[13] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[14] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
[15] | 马亚男, 卢旭, 魏云春, 李康, 魏若男, 李胜, 马绍英. 葡萄AKR基因家族的鉴定和组织特异性表达分析[J]. 生物技术通报, 2021, 37(8): 141-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||