生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 198-205.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0693
收稿日期:
2020-06-04
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
刘琴,女,硕士研究生,研究方向:趋磁细菌运动表征;E-mail:基金资助:
Received:
2020-06-04
Published:
2021-03-26
Online:
2021-04-02
摘要:
细菌的运动性是影响其生存及致病的一个关键条件,同时也为合成和开发仿生运动体、微型机器人等提供了有效的模型。趋磁细菌具有胞内磁小体从而能够感知磁场的变化,进而影响其运动行为。目前,这种外部磁场与生物体的远程响应模式已在环境、医疗、材料等领域有广泛应用。因此,聚焦于趋磁细菌的运动特性,综述了趋磁细菌运动行为的表征、运动机理以及应用等方面的最新研究进展,并对该领域的发展和面临的挑战进行了展望。
刘琴, 赵坤. 趋磁细菌运动特性的研究进展[J]. 生物技术通报, 2021, 37(3): 198-205.
LIU Qin, ZHAO Kun. Research Progress on the Movement Characteristics of Magnetotactic Bacteria[J]. Biotechnology Bulletin, 2021, 37(3): 198-205.
[1] |
Blair FD. How bacteria sense and swim[J]. Annual Review of Microbiology, 1995,49(1):489-520.
doi: 10.1146/annurev.mi.49.100195.002421 URL |
[2] |
Berg HC, Anderson RA. Bacteria swim by rotating their flagellar filaments[J]. Nature, 1973,245(5425):380-382.
doi: 10.1038/245380a0 URL pmid: 4593496 |
[3] | Wang X, Li Y, Zhao J, et al. Magnetotactic bacteria:Characteristics and environmental applications[J]. Frontiers of Environmental Science & Engineering, 2020,14(4):56. |
[4] | Tay A, McCausland H, Komeili A, et al. Nano and microtechnologies for the study of magnetotactic bacteria[J]. Advanced Functional Materials, 2019,29(38):10. |
[5] |
Sannigrahi S, Suthindhiran K. Metal recovery from printed circuit boards by magnetotactic bacteria[J]. Hydrometallurgy, 2019,187:113-124.
doi: 10.1016/j.hydromet.2019.05.007 URL |
[6] |
Boucher M, Geffroy F, Preveral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor[J]. Biomaterials, 2017,121:167-178.
URL pmid: 28088078 |
[7] |
Chen CF, Wang SH, Li LL, et al. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI[J]. Biomaterials, 2016,104:352-360.
URL pmid: 27487574 |
[8] | Chen C, Song T, Yang C, et al. Dynamic analysis of magnetotactic bacteria and construction of bacterial microrobot[J]. Robot, 2015,5(1):40-46. |
[9] |
De Lanauze D, Felfoul O, Turcot JP, et al. Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications[J]. International Journal of Robotics Research, 2014,33(3):359-374.
doi: 10.1177/0278364913500543 URL |
[10] |
Blakemore R. Magnetotactic bacteria[J]. Science, 1975,190(4212):377-379.
doi: 10.1126/science.170679 URL pmid: 170679 |
[11] |
Lefevre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria[J]. Microbiology and Molecular Biology Reviews, 2013,77(3):497-526.
doi: 10.1128/MMBR.00021-13 URL |
[12] |
Fassbinder JW, Stanjek H, Vali H. Occurrence of magnetic bacteria in soil[J]. Nature, 1990,343(6254):161-163.
doi: 10.1038/343161a0 URL pmid: 2296306 |
[13] |
Katzmann E, Eibauer M, Lin W, et al. Analysis of magnetosome chains in magnetotactic bacteria by magnetic measurements and automated image analysis of electron micrographs[J]. Applied and Environmental Microbiology, 2013,79:7755-7762.
doi: 10.1128/AEM.02143-13 pmid: 24096429 |
[14] |
Uebe R, Schueler D. Magnetosome biogenesis in magnetotactic bacteria[J]. Nature Reviews Microbiology, 2016,14(10):621-637.
doi: 10.1038/nrmicro.2016.99 URL pmid: 27620945 |
[15] |
Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes[J]. Nature Reviews Microbiology, 2004,2(3):217-230.
pmid: 15083157 |
[16] |
Arakaki A, Nakazawa H, Nemoto M, et al. Formation of magnetite by bacteria and its application[J]. Journal of the Royal Society Interface, 2008,5(26):977-999.
doi: 10.1098/rsif.2008.0170 URL |
[17] |
Snaidr J, Fuchs B, Wallner G, et al. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge[J]. Environ Microbiol, 1999,1(2):125-135.
pmid: 11207728 |
[18] |
Schüler D, Spring S, Bazylinski DA. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization[J]. Systematic & Applied Microbiology, 1999,22(3):466-471.
doi: 10.1016/S0723-2020(99)80056-3 URL pmid: 10553299 |
[19] |
Schüler D, Kohler M. The isolation of a new magnetic spirillum[J]. Zentralblatt für Mikrobiologie, 1992,147(1-2):150-151.
doi: 10.1016/S0232-4393(11)80377-X URL |
[20] |
Reufer M, Besseling R, Schwarz-Linek J, et al. Switching of swimming modes in Magnetospirillium gryphiswaldense[J]. Biophysical Journal, 2014,106(1):37-46.
doi: 10.1016/j.bpj.2013.10.038 pmid: 24411235 |
[21] |
Zhou M, Yang Y, Chen P, et al. More than a locomotive organelle:flagella in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015,99(21):8883-8890.
URL pmid: 26346269 |
[22] |
Larsen SH, Reader RW, Kort EN, et al. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli[J]. Nature, 1974,249(452):74-77.
doi: 10.1038/249074a0 URL pmid: 4598031 |
[23] | Vogel R, Stark H. Rotation-induced polymorphic transitions in bacterial flagella[J]. Physical Review Letters, 2013,110(15):5. |
[24] |
Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes[J]. Chemical Reviews, 2008,108(11):4875-4898.
doi: 10.1021/cr078258w URL pmid: 18855486 |
[25] |
Lele PP, Roland T, Shrivastava A, et al. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards[J]. Nature Physics, 2016,12(2):175-179.
doi: 10.1038/nphys3528 URL pmid: 27499800 |
[26] |
Murat D, Herisse M, Espinosa L, et al. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic spirillum[J]. Journal of Bacteriology, 2015,197(20):3275-3282.
doi: 10.1128/JB.00172-15 URL pmid: 26240070 |
[27] |
Simmons SL, Sievert SM, Frankel RB, et al. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond[J]. Applied & Environmental Microbiology, 2004,70(10):6230-6239.
doi: 10.1128/AEM.70.10.6230-6239.2004 URL pmid: 15466570 |
[28] | Klumpp S, Lefevre C, Landau L, et al. Magneto-aerotaxis:bacterial motility in magnetic fields[J]. Biophysical Journal, 2017,112(3):567A. |
[29] |
Klumpp S, Faivre D. Magnetotactic bacteria magnetic navigation on the microscale[J]. European Physical Journal-Special Topics, 2016,225(11-12):2173-2188.
doi: 10.1140/epjst/e2016-60055-y URL |
[30] |
Lefèvre C, Bennet M, Landau L, et al. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria[J]. Biophys J, 2014,107(2):527-538.
doi: 10.1016/j.bpj.2014.05.043 URL pmid: 25028894 |
[31] |
Popp F, Armitage JP, Schueler D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway[J]. Nature Communications, 2014,5:5398.
doi: 10.1038/ncomms6398 URL pmid: 25394370 |
[32] |
Frankel RB, Bazylinski DA, Johnson MS, et al. Magneto-aerotaxis in marine coccoid bacteria[J]. Biophys J, 1997,73(2):994.
doi: 10.1016/S0006-3495(97)78132-3 URL pmid: 9251816 |
[33] |
Popp F, Armitage JP, Schüler D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway[J]. Nature Communications, 2014,5:5398.
doi: 10.1038/ncomms6398 URL pmid: 25394370 |
[34] |
Mathieu B, Aongus MC, Dmitri F, et al. Influence of magnetic fields on magneto-aerotaxis[J]. PLoS One, 2014,9(7):e101150.
doi: 10.1371/journal.pone.0101150 URL pmid: 24983865 |
[35] | Takahashi H, Kikura H, Iwasa T, et al. The effect of magnetic field on magnetotactic bacteria behaviors[J]. Advances in Science & Technology, 2008,57:61-66. |
[36] |
Yazdi SR, Nosrati R, Stevens CA, et al. Magnetotaxis enables magnetotactic bacteria to navigate in flow[J]. Small, 2018,14(5):1702982.
doi: 10.1002/smll.v14.5 URL |
[37] | Khalil ISM, Fatih A, Hageman T, et al. IEEE international conference on robotics and automation[C]. Singapore:IEEE, 2017. |
[38] |
Rusconi R, Stocker R. Microbes in flow[J]. Current Opinion in Microbiology, 2015,25:1-8.
doi: 10.1016/j.mib.2015.03.003 URL pmid: 25812434 |
[39] |
Barry MT, Rusconi R, Guasto JS, et al. Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton[J]. J R Soc Interface, 2015,12(112):20150791.
doi: 10.1098/rsif.2015.0791 URL pmid: 26538558 |
[40] | 张文超, 张静超, 赵坤. 细菌显微追踪技术在生物被膜中的应用[J]. 生物工程学报, 2017,33(9):1411-1432. |
Zhang WC, Zhang JC, Zhao K. Application of bacterial tracking techniques in biofilms[J]. Chinese Journal of Biotechnology, 2017,33(9):1411-1432. | |
[41] |
Pichel MP, Hageman TAG, Khalil ISM, et al. Magnetic response of Magnetospirillum gryphiswaldense observed inside a microfluidic channel[J]. J Magn Magnetic Mater, 2018,460:340-353.
doi: 10.1016/j.jmmm.2018.04.004 URL |
[42] |
Nogueiral FS, Barros HGPL. Study of the motion of magnetotactic bacteria[J]. Eur Biophys J, 1995,24(1):13-21.
doi: 10.1007/BF00216826 URL |
[43] |
Aragao PHA, Simoes M. Chaotic motion of magnetotactic bacteria[J]. Chaos Solitons Fractals, 2000,11(6):923-928.
doi: 10.1016/S0960-0779(98)00257-4 URL |
[44] |
Erglis K, Wen Q, Ose V, et al. Dynamics of magnetotactic bacteria in a rotating magnetic field[J]. Biophys J, 2007,93(4):1402-1412.
doi: 10.1529/biophysj.107.107474 URL pmid: 17526564 |
[45] |
Zhang W, Wang Y, Lu H, et al. Dynamics of solitary predation by Myxococcus xanthus on Escherichia coli observed at the single-cell level[J]. Appl Environ Microbiol, 2020,86(3):e02286-02219.
doi: 10.1128/AEM.02286-19 URL pmid: 31704687 |
[46] |
Zhao K, Tseng BS, Beckerman B, et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms[J]. Nature, 2013,497(7449):388-391.
doi: 10.1038/nature12155 pmid: 23657259 |
[47] | Mankiewicz M, Martel S. Motion tracking and analysis system for magnetotactic bacteria[J]. Optomechatronic Computer-Vision Systems Ⅱ, 2007,6718:67180H. |
[48] |
Reneaux M, Gopalakrishnan M. Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient[J]. Journal of Theoretical Biology, 2010,266(1):99-106.
doi: 10.1016/j.jtbi.2010.06.012 URL pmid: 20558183 |
[49] | Melo RDD, Acosta-Avalos D. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets:evidence of a relation between swimming polarity and magnetic moment intensity[J]. European Biophysics Journal, 2017,46(6):1-7. |
[50] |
Lefèvre CT, Bernadac A, Yuzhang K, et al. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea[J]. Environ Microbiol, 2010,11(7):1646-1657.
doi: 10.1111/j.1462-2920.2009.01887.x URL pmid: 19220399 |
[51] | Cebers A, Ozols M. Dynamics of an active magnetic particle in a rotating magnetic field[J]. Physical Review E, 2006,73(2):5. |
[52] |
Steinberger B, Petersen N, Petermann H, et al. Movement of magnetic bacteria in time-varying magnetic fields[J]. Journal of Fluid Mechanics, 1994,273(-1):189-211.
doi: 10.1017/S0022112094001904 URL |
[53] |
Martel S, Mohammadi M, Felfoul O, et al. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature[J]. Int J Robot Res, 2009,28(4):571-582.
doi: 10.1177/0278364908100924 URL |
[54] | Martel S, Tremblay CC, Ngakeng S, et al. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria[J]. Applied Physics Letters, 2006,89(23):3. |
[55] |
Taherkhani S, Mohammadi M, Daoud J, et al. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synjournal of self-propelled therapeutic agents[J]. ACS Nano, 2014,8(5):5049-5060.
doi: 10.1021/nn5011304 pmid: 24684397 |
[56] |
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016,11(11):941-947.
doi: 10.1038/nnano.2016.137 pmid: 27525475 |
[57] |
Chen CY, Chen CF, Yi Y, et al. Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus[J]. Biomedical Microdevices, 2014,16(5):761-770.
doi: 10.1007/s10544-014-9880-2 URL |
[58] |
Stanton MM, Park BW, Vilela D, et al. Magnetotactic bacteria powered biohybrids target E. coli biofilms[J]. ACS Nano, 2017,11(10):9968-9978.
doi: 10.1021/acsnano.7b04128 pmid: 28933815 |
[59] | Martel S, Mohammadi M, 2010 Ieee International Conference on Robotics And Automation[C]. New York:IEEE, 2010. |
[60] |
Mandal P, Chopra V, Ghosh A. Independent positioning of magnetic nanomotors[J]. ACS Nano, 2015,9(5):4717-4725.
doi: 10.1021/acsnano.5b01518 URL pmid: 25824608 |
[61] |
Li Q, Chen H, Feng X, et al. Nanoparticle-regulated semiartificial magnetotactic bacteria with tunable magnetic moment and magnetic sensitivity[J]. Small, 2019,15(15):1900427.
doi: 10.1002/smll.v15.15 URL |
[62] |
Vach PJ, Klumpp S, Faivre D. Steering magnetic micropropellers along independent trajectories[J]. Journal of Physics D-Applied Physics, 2016,49(6):065003.
doi: 10.1088/0022-3727/49/6/065003 URL |
[63] |
Meng F, Matsunaga D, Golestanian R. Clustering of magnetic swimmers in a poiseuille flow[J]. Physical Review Letters, 2018,120(18):188101.
doi: 10.1103/PhysRevLett.120.188101 URL pmid: 29775341 |
[64] |
Belovs M, Livanovics R, Cebers A. Synchronized rotation in swarms of magnetotactic bacteria[J]. Phys Rev E, 2017,96(4):042408.
doi: 10.1103/PhysRevE.96.042408 URL |
[65] |
Kim DH, Cheang UK, Kohidai L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles:A tool for fabrication of microbiorobots[J]. Applied Physics Letters, 2010,97(17):173702.
doi: 10.1063/1.3497275 URL |
[66] |
Martin M, Carmona F, Cuesta R, et al. Artificial magnetic bacteria:Living magnets at room temperature[J]. Advanced Functional Materials, 2014,24(23):3489-3493.
doi: 10.1002/adfm.201303754 URL |
[67] | Klumpp S, Lefevre CT, Bennet M, et al. Swimming with magnets:From biological organisms to synthetic devices[J]. Physics Reports-Review Section of Physics Letters, 2019,789:1-54. |
[1] | 周子琦, 李舒婷, 田杰生, 贺万崇, 许文涛. 趋磁细菌改造及磁小体功能化的研究进展[J]. 生物技术通报, 2019, 35(4): 139-150. |
[2] | 李舒婷, 周子琦, 田杰生, 许文涛. 磁小体介导的生物传感器研究进展[J]. 生物技术通报, 2018, 34(9): 70-78. |
[3] | 马坤,赵宏鑫,李倩,王嘉榕,孙红宾. 磁小体膜蛋白Mms6功能与应用研究进展[J]. 生物技术通报, 2017, 33(9): 48-55. |
[4] | 刘新星, 云慧, 谢建平, 霍转转, 武海艳, 杨英杰. 磁小体形成过程相关基因和蛋白的研究进展 [J]. 生物技术通报, 2013, 0(8): 28-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||