生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 185-197.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0952
收稿日期:
2020-07-31
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
乔自鹏,男,硕士研究生,研究方向:纳米材料的微生物合成及其应用;E-mail:基金资助:
QIAO Zi-peng1(), WANG Qi-zhi1(), YANG Dao-mao1, RUAN Li-ping2
Received:
2020-07-31
Published:
2021-03-26
Online:
2021-04-02
摘要:
纳米银(Silver nanoparticles,AgNPs)是指三维结构中至少有一维在1-100 nm范围内的金属银材料,在光学、电学、催化和医药等领域得到了广泛应用。利用真菌生物合成AgNPs相比于传统的化学、物理合成方法,具有反应条件温和、绿色低毒、环境友好等优势备受关注。综述了近年来合成AgNPs真菌种类的研究进展,归纳了真菌合成AgNPs位点的优缺点;讨论影响真菌合成AgNPs尺寸、形貌及合成速率的因素;重点总结了合成机制的共识;介绍了AgNPs在生物医药、农业、催化剂等领域中的应用;最后指出真菌合成AgNPs还需深入研究的问题,对未来的可能突破进行展望,以期为今后真菌合成AgNPs的工业化生产提供参考与理论支撑。
乔自鹏, 王奇志, 杨道茂, 阮丽萍. 真菌介导纳米银生物合成的研究进展[J]. 生物技术通报, 2021, 37(3): 185-197.
QIAO Zi-peng, WANG Qi-zhi, YANG Dao-mao, RUAN Li-ping. Research Progress in Fungi-mediated Biosynthesis of Sliver Nanoparticles[J]. Biotechnology Bulletin, 2021, 37(3): 185-197.
真菌 | 形状 | 尺寸 | 合成位点 | 参考文献 |
---|---|---|---|---|
粉节皮菌(Arthroderma fulvum) | 球形 | 20.56 | 胞外 | [ |
烟曲霉菌(Aspergillus fumigatus BTCB10) | 球形 | 0.681 | 胞外 | [ |
米曲霉(Aspergillus oryzae MTCC No.1846) | 球形 | 7-27 | 胞外 | [ |
土曲霉(Aspergillus terreus) | 球形 | 45.2 | 胞外 | [ |
可可毛色二孢菌(BotryospHaeria rhodian) | 球形 | 2-50 | 胞外 | [ |
芽枝状枝孢(Cladosporium cladosporioides) | - | 30-60 | 胞外 | [ |
Colletotrichum incarnatum DM16.3 | 球形 | 5-25 | 胞外 | [ |
刺盘孢属(Colleotrichum sp. ALF2-6) | 球形、近球形、三角形、六角形 | 20-50 | 胞外 | [ |
嗜线虫真菌(Duddingtonia flagans) | 球形 | 11.38 | 胞外 | [ |
尖孢镰刀菌(Fusarium oxysporum) | 球形 | 24 | 胞外 | [ |
芒果球座菌(Guignardia mangiferae) | 球形 | 5-30 | 胞外 | [ |
玫烟色棒束孢(Isaria fumosorosea) | 球形 | 51.31-111.02 | 胞外 | [ |
色二孢(Lasiodiplodia theobromae) | 球形 | 62.77103 66.75-111.23 | 胞内 胞外 | [ |
马利亚霉菌(Mariannaea sp. HJ) | 球形、伪球形、棒状 | 15 | 胞内 | [ |
产黄青霉(Penicillium chrysogenum FGCC/BLS1) | 椭球形 | 96.8 | 胞外 | [ |
柑橘青霉菌(Penicillium italicum) | 球形 | 33 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum) | 球形 | 4 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum GRS-1) | 球形 | 10-40 | 胞内 | [ |
波兰青霉(Penicillium polonicum ARA 10) | 球形 | 10-15 | 胞外 | [ |
枫香拟茎点霉(Phomopsis liquidambaris) | 球形 | 18.7 | 胞外 | [ |
平菇菌(Pleurotus ostreatus) | 球形 | < 40 | - | [ |
匍枝根霉(Rhizopus stolonifera) | 球形 | 2.86 | 胞外 | [ |
链霉菌属(Streptomyces sp. VSMGT1014) | 球形 | - | 胞外 | [ |
Talaromyces purpureogenus | 球形、三角形 | < 50 | 胞内 | [ |
深绿木霉(Trichoderma atroviride) | 球形 | 10-15 | 胞外 | [ |
钩状木霉(Trichoderma hamatum) | 球形 | 6.69 | 胞外 | [ |
哈茨木霉菌(Trichoderma harzianum) | - | 57.02± 1.75-81.84± 0.67 | 胞外 | [ |
长枝木霉(Trichoderma longibrachiatum) | 球形 | 24.43 | 胞外 | [ |
里氏木霉(Trichoderma reesei) | 球形 | 15-25 | 胞外 | [ |
绿色木霉菌(Trichoderma viride) | 球形 | 3-16 | 胞外 | [ |
表1 纳米银(AgNPs)合成的典型真菌资源
真菌 | 形状 | 尺寸 | 合成位点 | 参考文献 |
---|---|---|---|---|
粉节皮菌(Arthroderma fulvum) | 球形 | 20.56 | 胞外 | [ |
烟曲霉菌(Aspergillus fumigatus BTCB10) | 球形 | 0.681 | 胞外 | [ |
米曲霉(Aspergillus oryzae MTCC No.1846) | 球形 | 7-27 | 胞外 | [ |
土曲霉(Aspergillus terreus) | 球形 | 45.2 | 胞外 | [ |
可可毛色二孢菌(BotryospHaeria rhodian) | 球形 | 2-50 | 胞外 | [ |
芽枝状枝孢(Cladosporium cladosporioides) | - | 30-60 | 胞外 | [ |
Colletotrichum incarnatum DM16.3 | 球形 | 5-25 | 胞外 | [ |
刺盘孢属(Colleotrichum sp. ALF2-6) | 球形、近球形、三角形、六角形 | 20-50 | 胞外 | [ |
嗜线虫真菌(Duddingtonia flagans) | 球形 | 11.38 | 胞外 | [ |
尖孢镰刀菌(Fusarium oxysporum) | 球形 | 24 | 胞外 | [ |
芒果球座菌(Guignardia mangiferae) | 球形 | 5-30 | 胞外 | [ |
玫烟色棒束孢(Isaria fumosorosea) | 球形 | 51.31-111.02 | 胞外 | [ |
色二孢(Lasiodiplodia theobromae) | 球形 | 62.77103 66.75-111.23 | 胞内 胞外 | [ |
马利亚霉菌(Mariannaea sp. HJ) | 球形、伪球形、棒状 | 15 | 胞内 | [ |
产黄青霉(Penicillium chrysogenum FGCC/BLS1) | 椭球形 | 96.8 | 胞外 | [ |
柑橘青霉菌(Penicillium italicum) | 球形 | 33 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum) | 球形 | 4 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum GRS-1) | 球形 | 10-40 | 胞内 | [ |
波兰青霉(Penicillium polonicum ARA 10) | 球形 | 10-15 | 胞外 | [ |
枫香拟茎点霉(Phomopsis liquidambaris) | 球形 | 18.7 | 胞外 | [ |
平菇菌(Pleurotus ostreatus) | 球形 | < 40 | - | [ |
匍枝根霉(Rhizopus stolonifera) | 球形 | 2.86 | 胞外 | [ |
链霉菌属(Streptomyces sp. VSMGT1014) | 球形 | - | 胞外 | [ |
Talaromyces purpureogenus | 球形、三角形 | < 50 | 胞内 | [ |
深绿木霉(Trichoderma atroviride) | 球形 | 10-15 | 胞外 | [ |
钩状木霉(Trichoderma hamatum) | 球形 | 6.69 | 胞外 | [ |
哈茨木霉菌(Trichoderma harzianum) | - | 57.02± 1.75-81.84± 0.67 | 胞外 | [ |
长枝木霉(Trichoderma longibrachiatum) | 球形 | 24.43 | 胞外 | [ |
里氏木霉(Trichoderma reesei) | 球形 | 15-25 | 胞外 | [ |
绿色木霉菌(Trichoderma viride) | 球形 | 3-16 | 胞外 | [ |
[1] |
Ovais M, Khaliy AT, Islam NU, et al. Role of plant phytochemicals and microbial enzymes in biosynjournal of metallic nanoparticles[J]. Applied Microbiology and Biotechnology, 2018,102:6799-6814.
doi: 10.1007/s00253-018-9146-7 URL pmid: 29882162 |
[2] |
Yaqoob AA, Parveen T, Umar K, et al. Role of nanomaterials in the treatment of wastewater:A review[J]. Water, 2020,12(2):495.
doi: 10.3390/w12020495 URL |
[3] |
Sang J, Aisawa S, Hirahara H, et al. Self-reduction and size controlled synjournal of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement[J]. Applied Surface Science, 2016,364:110-116.
doi: 10.1016/j.apsusc.2015.11.233 URL |
[4] |
Bhattarai B, Chakraborty I, Conn BE, et al. High-yield paste-based synjournal of thiolate-protected silver nanoparticles[J]. Journal of Physical Chemistry C, 2017,121(20):10964-10970.
doi: 10.1021/acs.jpcc.6b12427 URL |
[5] | Sarkar AK, Saha A, Midya L, et al. Cross-linked biopolymer stabilized exfoliated titanate nanosheet-supported AgNPs:A green sustainable ternary nanocomposite hydrogel for catalytic and antimicrobial activity[J]. Acs Sustainable Chemistry, 2017,5(2):1881-1891. |
[6] | Grand View Research. Silver nanoparticles market by application(electronics and electrical, healthcare, food and beverages, textiles)and segment forecasts to 2022[R]. San Francisco, 2015. |
[7] |
Ahmed S, Ahmad M, Swami BL, et al. Review on plants extract mediated synjournal of silver nanoparticles for antimicrobial applications:a green expertise[J]. Journal of Advanced Research, 2016,7(1):17-28.
doi: 10.1016/j.jare.2015.02.007 URL pmid: 26843966 |
[8] |
Al-Dhabi NA, Ghilan A-KM, Esmail GA, et al. Environmental friendly synjournal of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the saudi arabian marine regions for antimicrobial and antioxidant properties[J]. Journal of Photochemistry and Photobiology B:Biology, 2019,197:111529.
doi: 10.1016/j.jphotobiol.2019.111529 URL |
[9] | 朱炯霖, 李红, 秦圆, 等. 棉织物的纳米银多功能整理[J]. 精细化工, 2020,37(6):1274-1281. |
Zhu JH, Li H, Qin Y, et al. Nano-silver multifunctional finishing of cotton fabric[J]. Fine Chemicals, 2020,37(6):1274-1281. | |
[10] |
Shah A, Lutfullah G, Ahmad K, et al. Daphne mucronata -mediated phytosynjournal of silver nanoparticles and their novel biological applications, compatibility and toxicity studies[J]. Green Chemistry Letters and Reviews, 2018,11(3):318-333.
doi: 10.1080/17518253.2018.1502365 URL |
[11] |
Durán N, Marcato PD, Durán M, et al. Mechanistic aspects in the biogenic synjournal of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants[J]. Applied Microbiology and Biotechnology, 2011,90(5):1609-1624.
doi: 10.1007/s00253-011-3249-8 URL |
[12] |
Jiménez Pérez ZE, Mathiyalagan R, Markus J, et al. Ginseng-berry-mediated gold and silver nanoparticle synjournal and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines[J]. International Journal of Nanomedicine, 2017,12:709-723.
doi: 10.2147/IJN.S118373 URL pmid: 28260881 |
[13] |
Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts:scope an application[J]. Nanoscale Research Letters, 2016,11(1):98.
doi: 10.1186/s11671-016-1311-2 URL |
[14] |
Guilger-Casagrande M, Lima RD. Synjournal of silver nanoparticles mediated by fungi:A review[J]. Frontiers in Bioengineering and Biotechnology, 2019,7:287.
URL pmid: 31696113 |
[15] |
Alghuthaymi MA, Almoammar H, Rai M, et al. Myconanoparticles:synjournal and their role in phytopathogens management[J]. Biotechnology & Biotechnological Equipment, 2015,29(2):221-236.
doi: 10.1080/13102818.2015.1008194 URL pmid: 26019636 |
[16] |
Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes:quo vadis?[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2015,8(2):316-330.
doi: 10.1002/wnan.1363 URL pmid: 26271947 |
[17] |
Netala V, Bethu M, Pushpalatha B, et al. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities[J]. International Journal of Nanomedicine, 2016,11:5683-5696.
doi: 10.2147/IJN.S112857 URL pmid: 27826190 |
[18] |
Rahman S, Rahman L, Khalil AT, et al. Endophyte-mediated synjournal of silver nanoparticles and their biological applications[J]. Applied Microbiology and Biotechnology, 2019,103:2551-2569.
URL pmid: 30721330 |
[19] |
Azmath P, Baker S, Rakshith D, et al. Mycosynjournal of silver nanoparticles bearing antibacterial activity[J]. Saudi Pharmaceutical Journal, 2016,24(2):140-146.
doi: 10.1016/j.jsps.2015.01.008 pmid: 27013906 |
[20] | Prasad R. Fungal nanotechnology:applications in agriculture, industry, and medicine[M]. Singapore:Springer Nature, 2017, 35-55. |
[21] |
Wang L, He D, Gao S, et al. Biosynjournal of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium[J]. International Journal of Nanomedicine, 2016,11:1899-1906.
doi: 10.2147/IJN.S98339 URL pmid: 27217752 |
[22] | Shahzad A, Saeed H, Iqtedar M, et al. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10:likely antibacterial and cytotoxic effects[J]. Journal of Nanomaterials, 2019: 5168698. |
[23] | Phanjom P, Ahmed G. Effect of different physicochemical conditions on the synjournal of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae(MTCC No. 1846)and their antibacterial effect[J]. Advances in Natural Sciences Nanoscience and Nanotechnology, 2017,8(4):1-13. |
[24] | Ali AAM, Mohamed MA, Hussein HM. Antifungal activity of different size controlled stable silver nanoparticles biosynthesized by the endophytic fungus Aspergillus terreus[J]. Journal of Phytopathology and Pest Management, 2018,5(2):88-107. |
[25] |
Akther T, Mathipi V, Kumar NS, et al. Fungal-mediated synjournal of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis[J]. Environmental Science and Pollution Research, 2019,26:13649-13657.
doi: 10.1007/s11356-019-04718-w URL pmid: 30919178 |
[26] |
Hulikere MM, Joshi CG. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides[J]. Process Biochemistry, 2019,82:199-204.
doi: 10.1016/j.procbio.2019.04.011 URL |
[27] |
Chandankere R, Chelliah J, Subban K, et al. Pleiotropic functions and biological potentials of silver nanoparticles synthesized by an endophytic fungus[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:95.
doi: 10.3389/fbioe.2020.00095 pmid: 32154230 |
[28] |
Costa Silva LP, Oliveira JP, Keijok WJ, et al. Extracellular biosynjournal of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans[J]. International Journal of Nanomedicine, 2017,12:6373-6381.
doi: 10.2147/IJN.S137703 URL pmid: 28919741 |
[29] |
Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, et al. Controlled biosynjournal of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016,45(8):1588-1596.
doi: 10.1080/21691401.2016.1267011 URL pmid: 27966375 |
[30] |
Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synjournal of silver nanoparticles and their in vitro biological activities[J]. Microbiological Research, 2015,178:9-17.
doi: 10.1016/j.micres.2015.05.009 pmid: 26302842 |
[31] |
Banu AN, Balasubramanian C. Optimization and synjournal of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes[J]. Parasitology Research, 2014,113(10):3843-3851.
URL pmid: 25085201 |
[32] |
Vardhana J, Kathiravan G, Magesh CR. Biosynjournal of silver nanoparticles from endophytic fungi, and its cytotoxic activity[J]. Bionanoscience, 2019,9(3):573-57.
doi: 10.1007/s12668-019-00631-1 URL |
[33] | 杨婧, 林宇星, 刘莘轶, 等. 利用Mariannaea sp. HJ菌株胞内提取物合成纳米银及其抗菌特性研究[J]. 微生物学报, 2020,60(4):749-758. |
Yang J, Lin YX, Liu XY, et al. Biosynjournal of silver nanoparticles by the cell-free extracts of Mariannaea sp. HJ and their antimicrobial characteristics research[J]. Acta Microbiologica Sinica, 2020,60(4):749-758. | |
[34] |
Saxena J, Sharma P, Singh A. Biomimetic synjournal of silver nanoparticles from Penicillium chrysogenum strain FGCC/BLS1 by optimizing physico-cultural conditions and assessment of their antimicrobial potential[J]. IET Nanobiotechnology, 2016,11(5):576-583.
doi: 10.1049/iet-nbt.2016.0097 URL pmid: 28745292 |
[35] |
Nayak BK, Nanda A, Prabhakar V. Biogenic synjournal of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens[J]. Biocatalysis and Agricultural Biotechnology, 2018,16:412-418.
doi: 10.1016/j.bcab.2018.09.014 URL |
[36] |
Du L, Xu Q, Huang M, et al. Synjournal of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue[J]. Materials Chemistry and Physics, 2015,160:40-47.
doi: 10.1016/j.matchemphys.2015.04.003 URL |
[37] | Rose GK, Soni R, Rishi P, et al. Optimization of the biological synjournal of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens[J]. Green Processing and Synjournal, 2019,8(1):144-156. |
[38] |
Neethu S, Midhun SJ, Sunil MA, et al. Efficient visible light induced synjournal of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium[J]. Journal of Photochemistry and Photobiology B:Biology, 2018,180:175-185.
doi: 10.1016/j.jphotobiol.2018.02.005 URL |
[39] |
Seetharaman PK, Chandrasekaran R, Gnanasekar S, et al. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris[J]. Biocatalysis and Agricultural Biotechnology, 2018,16:22-30.
doi: 10.1016/j.bcab.2018.07.006 URL |
[40] |
Al-Bahrani R, Raman J, Lakshmanan H, et al. Green synjournal of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria[J]. Materials Letters, 2017,186:21-25.
doi: 10.1016/j.matlet.2016.09.069 URL |
[41] |
AbdelRahim K, Mahmoud SY, Ali AM. Extracellular biosynjournal of silver nanoparticles using Rhizopus stolonifer[J]. Saudi Journal of Biological Sciences, 2017,24(1):208-216.
doi: 10.1016/j.sjbs.2016.02.025 pmid: 28053592 |
[42] | Shanmugaiah V, Harikrishnan H, Al-harbi, NS, et al. Facile synjournal of silver nanoparticles using streptomyces sp. vsmgt1014 and their antimicrobial efficiency[J]. Digest Journal of Nanomaterials and Biostructures, 2015,10(1):179-187. |
[43] |
Hu X, Saravanakumar K, Jin T, et al. Mycosynjournal, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus[J]. International Journal of Nanomedicine, 2019,14:3427-3438.
doi: 10.2147/IJN.S200817 URL pmid: 31190801 |
[44] |
Abdel-Azeem A, Nada AA, O’Donovan A, et al. Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity[J]. Journal of Renewable Materials, 2020,8(2):171-185.
doi: 10.32604/jrm.2020.08960 URL |
[45] |
张杰, 张映, 郭瑞, 等. 钩状木霉生物合成纳米银及其杀菌性能[J]. 微生物学通报, 2016,43(2):386-393.
doi: 10.13344/j.microbiol.china.150328 URL |
Zhang J, Zhang Y, Guo R, et al. Biosynjournal of silver nanoparticles using Trichoderma hamatum and antibacterial activity[J]. Microbiology China, 2016,43(2):386-393. | |
[46] |
Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, et al. Biosynjournal of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum[J]. Scientific Reports, 2019,9(1):14351.
doi: 10.1038/s41598-019-50871-0 pmid: 31586116 |
[47] |
Elamawi RM, Al-Harbi RE, Hendi AA. Biosynjournal and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi[J]. Egyptian Journal of Biological Pest Control, 2018,28:28.
doi: 10.1186/s41938-018-0028-1 URL |
[48] |
Gemishev O, Panayotova MI, Mintcheva N, et al. A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization[J]. Materials Research Express, 2019,6(9):95040.
doi: 10.1088/2053-1591/ab2e6a URL |
[49] |
Othman AM, Elsayed MA, Elshafei AM, et al. Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synjournal[J]. Journal of Genetic Engineering and Biotechnology, 2017,15(2):497-504.
doi: 10.1016/j.jgeb.2017.08.003 URL pmid: 30647692 |
[50] |
Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate[J]. Colloids and Surfaces B:Biointerfaces, 2009,74(1):191-195.
doi: 10.1016/j.colsurfb.2009.07.016 URL pmid: 19660920 |
[51] | Deobagkar D, Kulkarni R, Shaiwale N, et al. Synjournal and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity[J]. International Journal of Nanomedicine, 2015(10):963-974. |
[52] |
Rajput S, Werezuk R, Lange RM, et al. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability[J]. Langmuir, 2016,32(34):8688-8697.
doi: 10.1021/acs.langmuir.6b01813 pmid: 27466012 |
[53] |
Ma L, Su W, Liu JX, et al. Optimization for extracellular biosynjournal of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions[J]. Materials Science and Engineering C, 2017,77:963-971.
doi: 10.1016/j.msec.2017.03.294 URL pmid: 28532117 |
[54] |
Ahluwalia V, Kumar J, Sisodia R, et al. Green synjournal of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia[J]. Industrial Crops and Products, 2014,55:202-206.
doi: 10.1016/j.indcrop.2014.01.026 URL |
[55] |
Husseiny SM, Salah TA, Anter HA. Biosynjournal of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities[J]. Beni Suef University Journal of Basic and Applied Sciences, 2015,4(3):225-231.
doi: 10.1016/j.bjbas.2015.07.004 URL |
[56] |
Hasnain MS, Javed MN, Alam MS, et al. Purple heart plant leaves extract-mediated silver nanoparticle synjournal:optimization by box-behnken design[J]. Materials Science & Engineering C, 2019,99:1105-1114.
doi: 10.1016/j.msec.2019.02.061 URL pmid: 30889643 |
[57] |
Birla SS, Gaikwad SC, Gade AK, et al. Rapid synjournal of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions[J]. Scientific World Journal, 2013. DOI: 10.1155/2013/796018.
doi: 10.1155/2021/8891563 URL pmid: 33628142 |
[58] |
Ashrafi SJ, Rastegar MF, Ashrafi M, et al. Influence of external factors on the production and morphology of biogenic silver nanocrystallites[J]. Journal of Nanoscience and Nanotechnology, 2013,13(3):2295-2301.
doi: 10.1166/jnn.2013.6791 URL pmid: 23755682 |
[59] |
Zomorodian K, Pourshahid S, Sadatsharifi A, et al. Biosynjournal and characterization of silver nanoparticles by Aspergillus species[J]. Biomed Research International, 2016. DOI: 10.1155/2016/5435397.
doi: 10.1155/2021/5543520 URL pmid: 33778065 |
[60] | 张青山, 岳秀萍. 纳米银粒子的生物制备及应用研究进展[J]. 材料导报, 2014,28(1):53-58. |
Zhang QS, Yue XP. Research progress of biological preparation and application of silver nanoparticles[J]. Materials Reports, 2014,28(1):53-58. | |
[61] |
Lee S, Jun B. Silver Nanoparticles:Synjournal and application for nanomedicine[J]. International Journal of Molecular Sciences, 2019,20(4):865.
doi: 10.3390/ijms20040865 URL |
[62] |
Salunke BK, Sawant SS, Lee SI, et al. Microorganisms as efficient biosystem for the synjournal of metal nanoparticles:current scenario and future possibilities[J]. World Journal of Microbiology and Biotechnology, 2016,32(5):88.
doi: 10.1007/s11274-016-2044-1 URL |
[63] |
Barabadi H, Ovais M, Shinwari ZK, et al. Anti-cancer green bionanomaterials:present status and future prospects[J]. Green Chemistry Letters and Reviews, 2017,10(4):285-314.
doi: 10.1080/17518253.2017.1385856 URL |
[64] |
Zhao X, Zhou L, Riaz Rajoka MS, et al. Fungal silver nanoparticles:synjournal, application and challenges[J]. Critical Reviews in Biotechnology, 2018,38(6):817-835.
doi: 10.1080/07388551.2017.1414141 URL pmid: 29254388 |
[65] |
Korbekandi H, Ashari Z, Iravani S, et al. Optimization of biological synjournal of silver nanoparticles using Fusarium oxysporum[J]. Iranian Journal of Pharmaceutical Research Ijpr, 2013,12(3):289-298.
URL pmid: 24250635 |
[66] |
Mukherjee P, Roy M, Mandal BP, et al. Green synjournal of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum[J]. Nanotechnology, 2008,19(7):75103.
doi: 10.1088/0957-4484/19/7/075103 URL |
[67] |
Chowdhury S, Basu A, Kundu S. Green synjournal of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina(Tassi)Goid with antimicrobial properties against multidrug-resistant bacteria[J]. Nanoscale Research Letters, 2014,9(1):365.
doi: 10.1186/1556-276X-9-365 URL pmid: 25114655 |
[68] |
Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles:synjournal, characterization, properties, applications, and therapeutic approaches[J]. International Journal of Molecular Sciences, 2016,17(9):1534.
doi: 10.3390/ijms17091534 URL |
[69] |
Singh T, Jyoti K, Patnaik A, et al. Biosynjournal, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus[J]. Journal of Genetic Engineering and Biotechnology, 2017,15(1):31-39.
URL pmid: 30647639 |
[70] |
Arun G, Eyini M, Gunasekaran P. Green synjournal of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications[J]. Biotechnology and Bioprocess Engineering, 2014,19(6):1083-1090.
doi: 10.1007/s12257-014-0071-z URL |
[71] |
Tamayo LA, Zapata PA, Vejar ND, et al. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes[J]. Materials Science and Engineering C, 2014,40:24-31.
doi: 10.1016/j.msec.2014.03.037 URL pmid: 24857461 |
[72] |
Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles[J]. Frontiers in Microbiology, 2016,7:1831.
doi: 10.3389/fmicb.2016.01831 URL pmid: 27899918 |
[73] |
Vijayakumar PS, Prasad BLV. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents[J]. Langmuir:the Acs Journal of Surfaces and Colloids, 2009,25(19):11741-11747.
doi: 10.1021/la901024p URL pmid: 19746940 |
[74] | Narasimha G. Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger[J]. Journal of Nanoscience & Nanotechnology, 2012,6(1):18-20. |
[75] | Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynth-esized silver nanoparticles against Herpes Simplex virus and Human Parainfluenza virus type 3[J]. International Journal of Nanomedicine, 2013,8(1):4303-4314. |
[76] |
Ortega FG, Fernández-Baldo M, Fernández J, et al. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast[J]. International Journal of Nanomedicine, 2015,10:2021-2031.
URL pmid: 25844035 |
[77] |
Han J, Gurunathan S, Jeong JK, et al. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial[J]. Nanoscale Research Letters, 2014,9:459-473.
doi: 10.1186/1556-276X-9-459 URL pmid: 25242904 |
[78] |
Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynjournal of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities[J]. Biotechnology Letters, 2019,41:899-914.
URL pmid: 31201601 |
[79] |
Sulaiman GM, Hussein HT, Saleem MMNM. Biosynjournal of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties[J]. Bulletin of Materials Science, 2015,38(3):639-644.
doi: 10.1007/s12034-015-0905-0 URL |
[80] | Kim SH, Lee HS, Ryu DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli[J]. Korean Journal of Microbiology and Biotechnology, 2011,39:77-85. |
[81] | Chen D, Qiao X, Qiu X, et al. Synjournal and electrical properties of uniform silver nanoparticles for electronic applications[J]. Journal of Materials Science, 2009,44:1076-1081. |
[82] | Abd El-Aziz ARM, Al-Othman MR, Mahmoud MA, et al. Biosynjournal of silver nanoparticles using Fusarium solani and its impact on grain borne fungi[J]. Digest Journal of Nanomaterials and Biostructures, 2015,10(2):655-662. |
[83] | 曲明星, 姚薇, 高增贵, 等. 木霉菌辅助合成纳米银对甜瓜的防病促生作用研究[J]. 生态环境学报, 2020,29(1):149-155. |
Qu MX, Yao W, Gao ZG, et al. Effects of Trichoderma strains biosynthetic silver nanoparticles on the growth-promotion and disease-control for melon[J]. Ecology and Environmental sciences, 2020,29(1):149-155. | |
[84] | Gherbawy Y, Shalaby I, El-sadek M, et al. The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole[J]. International Journal of Molecular Sciences, 2013,14(11):21887-21898. |
[85] | Fouda A, Hassan SE-D, Abdo AM, et al. Antimicrobial, antioxidant and larvicidal cctivities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp.[J]. Biological Trace Element Research, 2019,195(2):707-724. |
[86] | Mishra S, Yang X, Singh HB. Evidence for positive response of soil bacterial community structure and functions to biosynthesized silver nanoparticles:An approach to conquer nanotoxicity?[J]. Journal of Environmental Management, 2020,253:109584. |
[87] | Różalska S, Soliwoda K, Dlugonski J. Synjournal of silver nanopar-ticle by Metarhizium robertsii waste biomass extract after nonylph-enol degradation and its antimicrobial and catalytic potential[J]. RSC Advances, 2016,6(26):21475-21485. |
[88] | Rajegaonkar PS, Deshpande BA, More MS, et al. Catalytic reduction of p-nitrophenol and methylene blue by microbiologically synthesized silver nanoparticles[J]. Materials Science and Engineering C, 2018,93:623-629. |
[89] | Zhao X, Zhang J, Wang B, et al. Biochemical synjournal of Ag/AgCl nanoparticles for visible-light-driven photocatalytic removal of colored dyes[J]. Materials, 2015,8(5):2043-2053. |
[90] |
Fayaz M, Tiwary CS, Kalaichelvan PT, et al. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride[J]. Colloids and Surfaces B:Biointerfaces, 2010,75(1):175-178.
URL pmid: 19783414 |
[91] | Zheng D, Hu C, Gan T, et al. Preparation and application of a novel vanillin sensor based on biosynjournal of Au-Ag alloy nanoparticles[J]. Sensors and Actuators B-chemical, 2010,148(1):247-252. |
[92] |
Mohanta YK, Panda SK, Bastia AK, et al. Biosynjournal of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control[J]. Frontiers in Microbiology, 2017,8:626.
URL pmid: 28458659 |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[5] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[6] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[7] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[8] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[9] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[10] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[11] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[12] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[13] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[14] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[15] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||