生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 65-74.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0858
丁丽1,2(), 曾萍1(), 成璐瑶1, 宋永会1, 胡丽娜3
收稿日期:
2019-09-17
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
丁丽,女,硕士研究生,研究方向:水污染控制技术;E-mail:基金资助:
DING Li1,2(), ZENG Ping1(), CHENG Lu-yao1, SONG Yong-hui1, Hu Li-na3
Received:
2019-09-17
Published:
2021-03-26
Online:
2021-04-02
摘要:
针对磷霉素制药废水处理难的问题,采用生物强化处理技术,在前期获得两株磷霉素制药废水中α-苯乙胺降解菌P1和P2的基础上,优选出一株α-苯乙胺优势降解菌,并对其最佳生长条件进行研究。结果表明:两株菌P1和P2中优势降解菌为P2;其最佳生长条件为:接种量20%,温度35℃,pH 7;P2的降解效率受传代次数的影响,传代17代以后P2开始出现缓慢的退化现象;将α-苯乙胺优势降解菌投至实际磷霉素制药废水中,α-苯乙胺降解效率为76%。
丁丽, 曾萍, 成璐瑶, 宋永会, 胡丽娜. 一株α-苯乙胺的微生物降解菌的优选及其最佳生长条件研究[J]. 生物技术通报, 2021, 37(3): 65-74.
DING Li, ZENG Ping, CHENG Lu-yao, SONG Yong-hui, Hu Li-na. Optimization of a Strain of Microbe Degrading α-phenylethylamine and Its Optimal Growth Conditions[J]. Biotechnology Bulletin, 2021, 37(3): 65-74.
生长基质 | P1生长状况 | P2生长状况 |
---|---|---|
磷霉素钠 四环素 | — — | + + |
3,5-二氯苯酚 | + | + |
邻苯二甲酸 | + | + |
表1 菌株P1、P2对不同基质的耐受状况
生长基质 | P1生长状况 | P2生长状况 |
---|---|---|
磷霉素钠 四环素 | — — | + + |
3,5-二氯苯酚 | + | + |
邻苯二甲酸 | + | + |
[1] | 陈玲, 李倩. 农业生产对水环境的污染现状及治理对策[J]. 现代农业科技, 2011,3:293-294. |
Chen L, Li Q. Current situation and countermeasures of agricultural production pollution to water environment[J]. Modern Agricultural Science and Technology, 2011,3:293-294. | |
[2] | 张丽峰. 国家重污染事故频发河流水体污染防治战略研究[D]. 合肥:合肥工业大学, 2012. |
Zhang LF. Research on the Strategy of prevention and control of River Water Pollution with frequent heavy pollution accidents[D]. Hefei:Hefei University of Technology, 2012. | |
[3] | 高莹玉. α-苯乙胺的汽液平衡和拆分研究[D]. 郑州:郑州大学, 2013. |
Gao YY. Study on vapor-liquid equilibrium and resolution of α-phenylethylamine[D]. Zhengzhou:Zhengzhou University, 2013. | |
[4] | 张蕊. α-苯乙胺的萃取及工业研究[D]. 郑州:郑州大学, 2012. |
Zhang R. Extraction and industrial study of α-phenylethylamine[D]. Zhengzhou:Zhengzhou University, 2012. | |
[5] |
Sung K. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS[J]. Analytical and Bioanalytical Chemistry, 2007,387(4):1301-1315.
doi: 10.1007/s00216-006-0613-0 URL pmid: 16847620 |
[6] |
Petra E. Determination of UV filters and antimicrobial agents in environmental water samples[J]. Analytical and Bioanalytical Chemistry, 2007,387(4):1343-1350.
URL pmid: 17136341 |
[7] |
Osemwengie G. Levels of synthetic musk compounds in municipal wastewater for potential estimation of biota exposure in receiving waters[J]. Journal of Environmental Monitoring, 2004,6(6):533-539.
doi: 10.1039/b400514g URL pmid: 15173905 |
[8] |
Martinez. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008,321:365-367.
doi: 10.1126/science.1159483 URL pmid: 18635792 |
[9] | 张燕, 李萍, 董亚荣. 化学制药废水处理研究进展[J]. 北方环境, 2011,23(1):117-118. |
Zhang Y, Li P, Dong YR. Progress in chemical pharmaceutical wastewater treatment[J]. The Northern Environment, 2011,23(1):117-118. | |
[10] | 樊晓丽, 冯权莉. 制药废水的处理方法[J]. 应用化工, 2011,40(8):1458-1461. |
Fan XL, Feng QL. Treatment of pharmaceutical wastewater[J]. Application of Chemical, 2011,40(8):1458-1461. | |
[11] | 楼菊青. 制药废水处理进展综述[J]. 重庆科技学院学报:自然科学版, 2006,8(4):13-15. |
Lou JQ. Review on the progress of pharmaceutical wastewater treatment[J]. Journal of Chongqing University of Science and Technology:Natural Science Edition, 2006,8(4):13-15. | |
[12] | 尹莉, 陈丹. 应用微电解法预处理磷霉素钠制药废水[J]. 环境保护科学, 2010(3):47-49. |
Yin L, Chen D. Pretreatment of fosfomycin sodium pharmaceutical wastewater by microelectrolysis[J]. Environmental Protection Science, 2010(3):47-49. | |
[13] | 崔娜. 催化湿式氧化技术处理磷霉素钠制药废水研宄[D]. 大连:大连理工大学, 2011. |
Cui N. Study on the treatment of fosfomycin Sodium Pharmaceutical wastewater by catalytic wet oxidation technology[D]. Dalian:Dalian University of Technology, 2011. | |
[14] |
邱光磊, 宋永会, 曾萍, 等. 湿式氧化处理高浓度磷霉素废水的动力学研究[J]. 环境工程技术学报, 2011(4):289-294.
doi: 10.3969/j.issn.1674-991X.2011.04.048 URL |
Qiu GL, Song YH, Zeng P, et al. Study on the kinetics of wet oxidation treatment of high concentration fosfomycin wastewater[J]. Journal of Environmental Engineering Technology, 2011(4):289-294. | |
[15] | 樊杰, 宋永会, 张盼月, 等. Fenton-水解酸化-接触氧化处理模拟磷霉素钠制药废水[J]. 环境工程学报, 2014(7):2741-2747. |
Fan J, Song YH, Zhang PY, et al. Treatment of simulated fosfomycin sodium pharmaceutical wastewater by Fenton- hydrolysis acidification - contact oxidation[J]. Journal of Environmental Engineering, 2014(7):2741-2747. | |
[16] | 王国文. 催化湿式氧化—好氧颗粒污泥处理高浓度制药废水研究[D]. 大连:大连理工大学, 2012. |
Wang GW. Study on treatment of high concentration pharmaceutical wastewater by catalytic wet oxidation-aerobic granular sludge[D]. Dalian:Dalian University of Technology, 2012. | |
[17] |
Mcgrath JW, Hammerschmidt F, Quinn JP. Biiodegradation of phosphinimycin by Rhizobium huakuii PMY1[J]. Applied Environmental Microbiology, 1998,64(1):356-358.
doi: 10.1128/AEM.64.1.356-358.1998 URL pmid: 9435089 |
[18] | Mcgrath JW, Hammerschmidt F, K Hlig H, et al. Studies on the biodegradation of fosfomycin:Syjournal of 13C-labeled intermediates, Feeding experiments with Rhizobium huakuii PMY1, and isolation of labelled amino acids froom cell mass by HPLC[J]. Chemistry-A, 2011,17(47):13341-13348. |
[19] | Pallitsch K, Roller A, Hammerchmidt F. Towards thne bodegradation pathway of fosfomycin[J]. Organic & Biomolecular Chemistry, 2017,43(26):246-249. |
[20] | 谢晓琳, 曾萍, 宋永会, 等. 制药废水中磷霉素和α-苯乙胺的生物降解及相互作用[J]. 中国环境科学, 2014,34(11):2824-2830. |
Xie XL, Zeng P, Song YH, et al. Biodegradation and interaction of fosfomycin and α-phenylethylamine in pharmaceutical wastewater[J]. China Environmental Sciences, 2014,34(11):2824-2830. | |
[21] | 谢晓琳, 曾萍, 钱锋, 等. 磷霉素降解菌株的筛选及其降解性能研究[J]. 环境工程技术学报, 2019,9(1):36-43. |
Xie XL, Zeng P, Qian F, et al. Screening and degradation characterization of fosfomycin-degrading bacterial strains[J]. Journal of Environmental Engineering Technology, 2019,9(1):36-43. | |
[22] | 廖苗. 磷霉素制药废水的生物强化处理及应用研究[D]. 北京: 中国环境科学研究院, 2017. |
Liao M. Study on biological enhancement treatment and application of fosfomycin pharmaceutical wastewater[D]. Beijing: Chinese Academy of Environmental Sciences, 2017. | |
[23] | 周竹枫. 磷霉素钢和苯乙胺高效降解菌的筛选及其在CASS中的实际应用[D]. 沈阳: 辽宁大学, 2016. |
Zhou ZF. Screening of fosfomycin steel and Phenylethylamine degradation bacteria and its application in CASS[D]. Shenyang: Liaoning University, 2016. | |
[24] | 林胜, 周挺, 张玥, 等. 二氯喹啉酸降解菌嗜麦芽寡养单胞菌菌株J03生长特性及其对烟草和水稻的安全性[J]. 农药学学报, 2019: 138-144. |
Lin S, Zhou T, Zhang Y, et al. Growth characteristics and safety of quinolacin-degrading strain J03 from maltophilia oliotrophomonas maltoides against tobacco and rice[J]. Journal of Pesticide Science, 2019: 138-144. | |
[25] | 关晶晶, 王红旗, 朱宜, 等. 嗜麦芽寡养单胞菌全基因组测序及降解荧蒽特性研究[J]. 基因组学与应用生物学, 2019(7):3037-3045. |
Guan JJ, Wang HQ, Zhu Y, et al. Complete genome sequencing and degradation of fluoranthene by Maltophilia oliotrophomonas[J]. Genomics and Applied Biology, 2019(7):3037-3045. | |
[26] | 孙璐璐, 赵晓祥, 白恒, 等. 微嗜酸寡养单胞菌的分离培养及其对颜料红23的降解[J]. 东华大学学报:自然科学版, 2018,6(44):959-965. |
Sun LL, Zhao XX, Bai H, et al. Isolation and culture of microacidophilic oligotrophomonas and its degradation of pigment red 23[J]. Journal of Donghua University:Natural Science, 2018,6(44):959-965. | |
[27] | 肖建军, 李亚龙, 杨琦. 苯降解菌的筛选及其对苯的降解研究[J], 环境工程, 2018,6(36):159-162. |
Xiao JJ, Li YL, Yang Q. Screening of benzene-degrading bacteria and study on their degradation of benzene[J]. Environmental Engineering, 2018,6(36):159-162. | |
[28] | 姚志刚, 王君, 范延辉. 罗尔斯通氏菌株及其在石油污染盐碱土壤生物修复中的应用:中国, 201010216201[P]. 2011-01-05. |
Yao ZG, Wang J, Fan YH. Rollstone’s strain and its application in bioremediation of petroleum contaminated saline soil:China, 201010216201[P]. 2011-01-05. | |
[29] | 林晓敏, 朱健, 汤思敏, 等. 一株耐Cd罗尔斯通氏菌的分离、鉴定及其对Cd2+的吸附特性研究[J]. 中南林业科技大学学报, 2020,6(40):149-157. |
Lin XM, Zhu J, Tang SM. Et al. Isolation and identification of a Cd-resistant Rollstone strain and its adsorption characteristics for Cd2+[J]. Journal of Central South University of Forestry and Technology, 2020,6(40):149-157. | |
[30] | 谢晓琳. 磷霉素降解菌的筛选及其性能研究[D]. 北京: 中国环境科学研究院, 2014. |
Xie XL. Screening and performance of fosfomycin degrading bacteria[D]. Beijing: Chinese Academy of Environmental Sciences, 2014. | |
[31] | 王辰, 张谷月, 张园园, 等. 白刺链霉菌(Streptomyces albos-pinus)CT205 菌株发酵条件优化及其次生代谢产物性质研究[J]. 南京农业大学学报, 2015,38(2):304-310. |
Wang C, Zhang GY, Zhang YY, et al. Opti ization of fermentation conditions and properties of secondary metabolites of Streptomyces albospinus CT205 strain[J]. Journal of Nanjing Agricultural University, 2015,38(2):304-310. |
[1] | 张玲, 张荣意, 刘盛科, 谭志琼. 瓜类细菌性果斑病菌拮抗细菌的筛选及其抑菌作用[J]. 生物技术通报, 2023, 39(1): 253-263. |
[2] | 沈锦玉;潘晓艺;尹文林;郝贵杰;曹铮;. 大黄鱼细菌性病原哈维氏弧菌培养特性的研究[J]. , 2009, 0(S1): 232-235. |
[3] | 周丽沙;安海英;李慧;杨伟超;徐慧;史荣久;. 应用混合菌系实现右旋磷霉素手性生物转化的初步研究[J]. , 2008, 0(S1): 374-377. |
[4] | 杨淑培. 王山鸣等发明了寻找人类基因的新方法[J]. , 2000, 0(03): 55-55. |
[5] | . 固氮作用[J]. , 1989, 0(09): 88-91. |
[6] | . 环境保护上的应用[J]. , 1989, 0(06): 123-125. |
[7] | . 化工上的应用[J]. , 1987, 0(07): 105-109. |
[8] | . 固氮作用[J]. , 1985, 0(08): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||