生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 127-136.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1107
收稿日期:
2020-09-01
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
潘兰佳,女,博士,研究方向:废弃物资源化及污染物控制;E-mail:基金资助:
PAN Lan-jia1,2(), LI Jie2, LIN Qing-huai1, WANG Yin2()
Received:
2020-09-01
Published:
2021-04-26
Online:
2021-05-13
摘要:
餐厨废油是餐厨垃圾处理过程中的附加产物,是一种高含碳量的碳氢化合物。利用贪铜菌(Cupriavidus necator)以混合餐厨废油为单一碳源合成可生物降解塑料——聚羟基丁酸酯(PHB),分析菌株利用餐厨废油合成PHB的最佳条件,并对所合成的PHB进行了性质研究。通过进一步发酵培养,探究对比了不同发酵模式下菌株利用餐厨废油合成PHB的产量,为未来产业化奠定基础。结果表明:在30℃,150 r/min,pH 7.0,3%餐厨废油添加量和接种量条件下,Cupriavidus necator的生长量与 PHB 合成量均达到最大值,分别为9.5 g/L和7.6 g/L。利用5 L发酵罐进行分批培养,PHB的产量在发酵96 h后达到8.25 g/L。本研究利用餐厨废油合成的PHB平均分子量为30 kD,分散性指数(PDI)为1.44。PHB的熔化温度为175.7℃,分解温度为285.5℃,可以满足热塑性材料的需求。
潘兰佳, 李杰, 林清怀, 汪印. 贪铜菌利用混合餐厨废油合成聚羟基丁酸酯[J]. 生物技术通报, 2021, 37(4): 127-136.
PAN Lan-jia, LI Jie, LIN Qing-huai, WANG Yin. Polyhydroxybutyrate Production from Mixed Waste Cooking Oil by Cupriavidus necator[J]. Biotechnology Bulletin, 2021, 37(4): 127-136.
脂肪酸Fatty acid | 含量Content/% |
---|---|
十六烷酸Palmitic acid(C16:0) | 14.887 |
十八烷酸Stearic acid(C18:0) | 4.097 |
十八碳烯酸Octadecenoic acid(C18:1) | 31.000 |
亚麻酸Linolenic acid(C18:3) | 28.380 |
亚油酸Linoleic acid(C18:2) | 18.086 |
其他Others | 3.550 |
表1 餐厨废油的脂肪酸含量
Table 1 Fatty acid content of the waste cooking oil
脂肪酸Fatty acid | 含量Content/% |
---|---|
十六烷酸Palmitic acid(C16:0) | 14.887 |
十八烷酸Stearic acid(C18:0) | 4.097 |
十八碳烯酸Octadecenoic acid(C18:1) | 31.000 |
亚麻酸Linolenic acid(C18:3) | 28.380 |
亚油酸Linoleic acid(C18:2) | 18.086 |
其他Others | 3.550 |
图2 温度对菌株C. necator细胞干重和PHB合成的影响 不同大写字母表示各处理组中的菌体干重有显著差异(P<0.05);不同小写字母表示各处理组中的PHA占比有显著差异(P<0.05),下同
Fig. 2 Effect of temperature on the cell dry weight of strain C. necator and PHB synthesis Different capital letters represent significant difference (P < 0.05); different lowercase letters represent the percentage of PHB has significant difference (P < 0.05), the same below
模式 Mode | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content/wt% | PHB/(g·L-1) |
---|---|---|---|
M1 | 10.75 | 76.75 | 8.25 |
M2 | 7.62 | 86.88 | 6.62 |
M3 | 6.79 | 82.06 | 5.57 |
表2 不同发酵模式下菌体和PHB产量
Table 2 Bacterial cell and PHB production under different fermentation modes
模式 Mode | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content/wt% | PHB/(g·L-1) |
---|---|---|---|
M1 | 10.75 | 76.75 | 8.25 |
M2 | 7.62 | 86.88 | 6.62 |
M3 | 6.79 | 82.06 | 5.57 |
循环 Circulation | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content /wt% | PHB/(g·L-1) |
---|---|---|---|
1 | 10.75 | 76.75 | 8.25 |
2 | 12.38 | 76.77 | 9.50 |
3 | 11.10 | 76.22 | 8.46 |
4 | 12.12 | 77.36 | 9.38 |
表3 模式一发酵培养实验结果
Table 3 Experiment results of fermentation model 1
循环 Circulation | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content /wt% | PHB/(g·L-1) |
---|---|---|---|
1 | 10.75 | 76.75 | 8.25 |
2 | 12.38 | 76.77 | 9.50 |
3 | 11.10 | 76.22 | 8.46 |
4 | 12.12 | 77.36 | 9.38 |
菌种Strain | 碳源Carbon source | Mn /kD | Mw /kD | PDI | 熔化温度 Melting temperature/℃ | 分解温度Decomposition temperature/℃ | 参考文献Reference |
---|---|---|---|---|---|---|---|
B. thailandensis | 餐厨废油 Waste cooking oil | 179 | 511 | 2.86 | 166.4 | 279.3 | [17] |
C. necator DSM428 | 餐厨废油 Waste cooking oil | 110 | 170 | 1.5 | 168.6 | - | [19] |
咖啡渣油 Coffee residue oil | - | 234 | 1.2 | 172.3 | - | [20] | |
C. necator(CGMCC 1.7092) | 混合餐厨废油 Mixed waste cooking oil | 20 | 30 | 1.44 | 175.7 | 285.5 | 本研究 This study |
表4 细菌合成PHB的分子量分布和热力学性质
Table 4 Molecular weight distribution and thermodynamic properties of PHB synthesized by bacteria
菌种Strain | 碳源Carbon source | Mn /kD | Mw /kD | PDI | 熔化温度 Melting temperature/℃ | 分解温度Decomposition temperature/℃ | 参考文献Reference |
---|---|---|---|---|---|---|---|
B. thailandensis | 餐厨废油 Waste cooking oil | 179 | 511 | 2.86 | 166.4 | 279.3 | [17] |
C. necator DSM428 | 餐厨废油 Waste cooking oil | 110 | 170 | 1.5 | 168.6 | - | [19] |
咖啡渣油 Coffee residue oil | - | 234 | 1.2 | 172.3 | - | [20] | |
C. necator(CGMCC 1.7092) | 混合餐厨废油 Mixed waste cooking oil | 20 | 30 | 1.44 | 175.7 | 285.5 | 本研究 This study |
[1] |
Zainab LI, Uyama H, Li C, et al. Production of polyhydroxyalkanoates from underutilized plant oils by Cupriavidus necator[J]. CLEAN Soil, Air, Water, 2018,46(11):1700542.
doi: 10.1002/clen.v46.11 URL |
[2] |
Bandeira PPC, Nunes JMN, Rodrigues PR, et al. Evaluation of Polyhydroxyalkanoates production by Cupriavidus necator and Burkholderia cepacia strains using sunflower seed and oil[J]. Waste and Biomass Valorization, 2020,11(4):1271-1278.
doi: 10.1007/s12649-018-0463-y URL |
[3] | Raza ZA, Abid S, Banat IM. Polyhydroxyalkanoates:Characteristics, production, recent developments and applications[J]. International Biodeterioration & Biodegradation, 2018,126:45-56. |
[4] |
Dalsasso RR, Pavan FA, Bordignon SE, et al. Polyhydroxybutyrate(PHB)production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate[J]. Process Biochemistry, 2019,85:12-18.
doi: 10.1016/j.procbio.2019.07.007 pmid: WOS:000488654200002 |
[5] | 罗孟君, 熊运新, 曾明慧, 等. 国内外餐厨废油的危害与资源化处理现状研究[J]. 广州化工, 2017,45(16):149-150, 188. |
Luo MJ, Xiong YX, Zeng MH, et al. Study on hazards and resourceful treatment of kitchen waste oil[J]. Guangzhou Chemical Industry, 2017,45(16):149-150, 188. | |
[6] |
Lopez-Cuellar MR, Alba-Flores J, Rodriguez JN, et al. Production of polyhydroxyalkanoates(PHAs)with canola oil as carbon source[J]. International Journal of Biological Macromolecules, 2011,48(1):74-80.
doi: 10.1016/j.ijbiomac.2010.09.016 URL |
[7] |
Obruca S, Marova I, Snajdar O, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate[J]. Biotechnology Letters, 2010,32(12):1925-1932.
doi: 10.1007/s10529-010-0376-8 URL |
[8] |
Obruca S, Benesova P, Oborna J, et al. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate)production from oils by Cupriavidus necator[J]. Biotechnology Letters, 2014,36(4):775-781.
doi: 10.1007/s10529-013-1407-z URL |
[9] |
Kahar P, Tsuge T, Taguchi K, et al. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain[J]. Polymer Degradation and Stability, 2004,83(1):79-86.
doi: 10.1016/S0141-3910(03)00227-1 URL |
[10] |
Nascimento LL, Neves Nunes JM, Rodrigues PR, et al. Bioconversion of residual soybean oil into polyhydroxyalkanoates[J]. Journal of Applied Polymer Science, 2018,135(19):46255.
doi: 10.1002/app.46255 URL |
[11] |
Park DH, Kim BS, Production of poly(3-hydroxybutyrate)and poly(3-hydroxybutyrate-co-4-hydroxybutyrate)by Ralstonia eutropha from soybean oil[J]. New Biotechnology, 2011,28(6):719-724.
doi: 10.1016/j.nbt.2011.01.007 pmid: 21333767 |
[12] |
Sudesh K, Bhubalan K, Chuah JA, et al. Synjournal of polyhydroxyalkanoate from palm oil and some new applications[J]. Applied Microbiology and Biotechnology, 2011,89(5):1373-1386.
doi: 10.1007/s00253-011-3098-5 pmid: 21279347 |
[13] |
Verlinden RAJ, Hill DJ, Kenward MA, et al. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator[J]. AMB Express, 2011,1(1):11.
doi: 10.1186/2191-0855-1-11 pmid: 21906352 |
[14] | 种宇轩, 任连海, 王攀. 利用煎炸废油合成PHA的工艺条件探讨[J]. 绿色科技, 2016,10:65-67, 71. |
Chong YX, Ren LH, Wang P. Fermentation condition factors influence of a PHA producing strain biosynjournal PHA by using waste fried oil[J]. Journal of Green Science and Technology, 2016,10:65-67, 71. | |
[15] |
Cruz MV, Sarraguça MC, Freitas F, et al. Online monitoring of P(3HB)produced from used cooking oil with near-infrared spectroscopy[J]. Journal of Biotechnology, 2015,194:1-9.
doi: 10.1016/j.jbiotec.2014.11.022 URL |
[16] |
Hahn SK, Chang YK, Kim BS, et al. Optimization of microbial poly(3-hydroxybutyrate)recover using dispersions of sodium hypochlorite solution and chloroform[J]. Biotechnology and Bioengineering, 1994,44(2):256-261.
doi: 10.1002/(ISSN)1097-0290 URL |
[17] |
Kourmentza C, Costa J, Azevedo Z, et al. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids[J]. Bioresource Technology, 2018,247:829-837.
doi: S0960-8524(17)31703-0 pmid: 30060419 |
[18] |
Yousuf RG, Winterburn JB. Waste date seed oil extract as an alternative feedstock for Poly(3-hydroxybutyrate)synjournal[J]. Biochemical Engineering Journal, 2017,127:68-76.
doi: 10.1016/j.bej.2017.08.007 URL |
[19] |
Cruz MV, Freitas F, Paiva A, et al. Valorization of fatty acids-containing wastes and byproducts into short-and medium-chain length polyhydroxyalkanoates[J]. New Biotechnology, 2016,33(1):206-215.
doi: 10.1016/j.nbt.2015.05.005 URL |
[20] |
Cruz MV, Paiva A, Lisboa P, et al. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology[J]. Bioresource Technology, 2014,157:360-363.
doi: 10.1016/j.biortech.2014.02.013 URL |
[21] |
Pan LJ, Tang XD, Li CX, et al. Biodegradation of sulfamethazine by an isolated thermophile-Geobacillus sp. S-07[J]. World Journal of Microbiology & Biotechnology, 2017,33:85.
doi: 10.1007/s11274-017-2245-2 URL |
[22] | 任连海, 刘慧, 张明露. Cupriavidus necator(DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016,10(6):3166-3172. |
Ren LH, Liu H, Zhang ML. Optimizing fermentation conditions for polyhydroxyalkanoates synjournal from waste oil by Cupriavidus necator(DSM428)[J]. Chinese Journal of Environmental Engineering, 2016,10(6):3166-3172. | |
[23] |
Khunthongkaew P, Murugan P, Sudesh K, et al. Biosynjournal of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production[J]. Journal of Polymer Research, 2018,25(6):131.
doi: 10.1007/s10965-018-1521-7 URL |
[24] |
Ng KS, Ooi WY, Goh LK, et al. Evaluation of jatropha oil to produce poly(3-hydroxybutyrate)by Cupriavidus necator H16[J]. Polymer Degradation and Stability, 2010,95(8):1365-1369.
doi: 10.1016/j.polymdegradstab.2010.01.021 URL |
[25] | Cruz MV, Gouveia AR, Dionísio M, et al. A process engineering approach to improve production of P(3HB)by Cupriavidus necator from used cooking oil[J]. International Journal of Polymer Science, 2019(9):1-7. |
[26] |
Obruca S, Petrik S, Benesova P, Svoboda Z, et al. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates[J]. Applied Microbiology and Biotechnology, 2014,98:5883-5890.
doi: 10.1007/s00253-014-5653-3 URL |
[27] |
Obruca S, Snajdar O, Svoboda Z, et al. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil[J]. World Journal of Microbiology and Biotechnology, 2013,29(12):2417-2428.
doi: 10.1007/s11274-013-1410-5 URL |
[28] | 尹进, 车雪梅, 陈国强. 聚羟基脂肪酸酯的研究进展[J]. 生物工程学报, 2016,32(6):726-737. |
Yin J, Che XM, Chen GQ. Progress on polyhydroxyalkanoates(PHA)[J]. Chinese Journal of Biotechnology, 2016,32(6):726-737. | |
[29] | Fadzil FIB M, Tsuge T. Bioproduction of polyhydroxyalkanoate from plant oils[M]// Kalia VC. Microbial Applications Vol.2. Cham: Springer, 2017: 231-260. |
[30] | 许辅乾, 嗜热螯台球菌产聚羟基脂肪酸酯的研究[D]. 广州:华南理工大学, 2014. |
Xu FQ, Study on the production of polyhydroxyalkanoates by the thermophilic Chelatococcus daeguensis TAD1[D]. Guangzhou:South China University of Technology, 2014. | |
[31] | Zhu C, Nomura CT, Perrotta JA, et al. Production and characteriza-tion of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkho-lderia cepacia ATCC 17759[J]. Biotechnology Progress, 2010,26(2):424-430. |
[1] | 潘兰佳, 李杰, 林清怀, 汪印. 废油脂生物合成聚羟基脂肪酸酯的研究进展[J]. 生物技术通报, 2020, 36(7): 190-199. |
[2] | 邱石正, 李佳益, 杨景辰, 刘长莉. 低成本合成聚羟基脂肪酸酯(PHAs)的研究进展[J]. 生物技术通报, 2019, 35(9): 45-52. |
[3] | 张梦颖, 李雅慧, 詹元龙, 刘长莉. 嗜盐菌生物合成聚羟基脂肪酸酯(PHAs)的研究进展[J]. 生物技术通报, 2019, 35(6): 172-177. |
[4] | 黄媛媛;. 活性污泥合成聚羟基脂肪酸脂的研究进展[J]. , 2009, 0(06): 59-61. |
[5] | 孙国凤;. 日水产厅计划开发生物分解性渔网以便在日美渔业谈判中居于有利地位[J]. , 1989, 0(07): 34-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||