生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 177-193.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1158
钱凯荣(), 马增岭, 李仁辉, 陈斌斌, 王敏, 朱淑楠, 荣梦薇, 秦文莉()
收稿日期:
2020-09-13
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
钱凯荣,男,硕士研究生,研究方向:水环境修复;E-mail:基金资助:
QIAN Kai-rong(), MA Zeng-ling, LI Ren-hui, CHEN Bin-bin, WANG Min, ZHU Shu-nan, RONG Meng-wei, QIN Wen-li()
Received:
2020-09-13
Published:
2021-04-26
Online:
2021-05-13
摘要:
水体富营养化引起的藻华问题依旧是当前世界共同面对的难题,其中植物释放化感物质应对藻华是高效低耗的手段,受到国内外研究者的青睐。综述了不同水生植物和陆生植物对铜绿微囊藻(Microcystis aeruginosa)的生长影响,总结了抑制铜绿微囊藻的植物种类、研究方法、化感作用效果以及化感作用机理,归纳了各种植物的化感作用特点,提出了植物化感抑藻研究中存在的问题,展望了植物抑藻效应的发展方向和前景。
钱凯荣, 马增岭, 李仁辉, 陈斌斌, 王敏, 朱淑楠, 荣梦薇, 秦文莉. 植物化感作用研究进展——以抑制铜绿微囊藻生长为例[J]. 生物技术通报, 2021, 37(4): 177-193.
QIAN Kai-rong, MA Zeng-ling, LI Ren-hui, CHEN Bin-bin, WANG Min, ZHU Shu-nan, RONG Meng-wei, QIN Wen-li. Progress in the Study of Allelopathy in Plants:A Case Study of Inhibiting Microcystis aerugingosa Growth[J]. Biotechnology Bulletin, 2021, 37(4): 177-193.
序号No. | 化学结构分类Chemical structure classification | 化感物质Allelochemical |
---|---|---|
1 | 类萜Terpenes | 类萜和甾类化合物Terpenes and steroid |
2 | 含氮化合物Nitrogen compounds | 氨基酸和多肽Amino acids and polypeptide |
生物碱和氰醇Alkaloid and cyanohydrins | ||
嘌呤和核苷Purine and nucleic acid | ||
3 | 脂肪族Aliphatic compounds | 水溶性有机酸Water-soluble organic acid |
直链醇Straight chain alcohols | ||
脂肪族醛和酮Aliphatic aldehydes and alcohols | ||
简单不饱和内酯Simple unsaturated lactone | ||
长链脂肪酸和多炔Long-chain fatty acid and polyacetylene | ||
硫化物和芥子油苷Salphide inclusions and glucosinolate | ||
4 | 含氧杂环化合物Oxygen heterocyclic compounds | 香豆素类Coumarins |
单宁Tannin | ||
5 | 芳香族Aromatic compounds | 萘醌Naphthoquinone |
蒽醌和复合醌Anthraquinone and complex quinones | ||
简单酚Simple phenols | ||
苯甲酸及其衍生物Benzoic acid and deribvatives | ||
肉桂酸及其衍生物Cinnamic acid and derivatives | ||
类黄酮Flaronoids |
表1 按化学结构对化感物质的归类
Table 1 The classification of allelochemicals in terms of their chemical structure
序号No. | 化学结构分类Chemical structure classification | 化感物质Allelochemical |
---|---|---|
1 | 类萜Terpenes | 类萜和甾类化合物Terpenes and steroid |
2 | 含氮化合物Nitrogen compounds | 氨基酸和多肽Amino acids and polypeptide |
生物碱和氰醇Alkaloid and cyanohydrins | ||
嘌呤和核苷Purine and nucleic acid | ||
3 | 脂肪族Aliphatic compounds | 水溶性有机酸Water-soluble organic acid |
直链醇Straight chain alcohols | ||
脂肪族醛和酮Aliphatic aldehydes and alcohols | ||
简单不饱和内酯Simple unsaturated lactone | ||
长链脂肪酸和多炔Long-chain fatty acid and polyacetylene | ||
硫化物和芥子油苷Salphide inclusions and glucosinolate | ||
4 | 含氧杂环化合物Oxygen heterocyclic compounds | 香豆素类Coumarins |
单宁Tannin | ||
5 | 芳香族Aromatic compounds | 萘醌Naphthoquinone |
蒽醌和复合醌Anthraquinone and complex quinones | ||
简单酚Simple phenols | ||
苯甲酸及其衍生物Benzoic acid and deribvatives | ||
肉桂酸及其衍生物Cinnamic acid and derivatives | ||
类黄酮Flaronoids |
植物类型Plant type | 植物名称 Botanical name | 实验方式 Experimental method | 主要化感物质 Major allelochemicals | 有效抑制率 Effective inhibition rate/% | 参考文献Reference |
---|---|---|---|---|---|
沉水植物 Submerged macrophyte | 穗花狐尾藻Myriophyllum spicatum | 浸提液Lixivium | 单宁、脂肪酸类Tannin and fatty acid | 58.5 | [42] |
粉绿狐尾藻Myriophyllum aquaticum | 种植水Planting water | - | 89.61 | [4-5] | |
轮叶狐尾藻Myriophyllum verticillatum | 共培养Co-culture | - | >90 | [43] | |
伊乐藻Elodea canadensis | 浸提液Lixivium | 有机酸类Organic acids | 47.7 | [44] | |
苦草Vallisneria natans | 种植水、浸提液Planting water and lixivium | 酚酸类Phenolic acids | 52.9 | [42,45] | |
黑藻Hydrilla verticillata | 种植水Planting water | 有机酸类Organic acids | >80 | [23,46] | |
金鱼藻Antirrhinum majus | 种植水、浸提液Planting water and lixivium | - | 100 | [22] | |
杉叶藻Hippuris vulgaris | 种植水Planting water | - | <50 | [47] | |
小茨藻Najas minor | 共培养Co-culture | - | 94.1 | [48] | |
马来眼子菜Potamogeton malaianus | 浸提液Lixivium | 脂肪酸类、甾醇类Fatty acid and sterol | - | [16] | |
微齿眼子菜Potamogeton maackianus | 共培养Co-culture | - | 100 | [22] | |
篦齿眼子菜Potamogeton pectinatus | 共培养Co-culture | - | 93.6 | [19,49] | |
菹草Potamogeton crispus | 共培养、浸提液Co-culture and lixivium | - | 94.92 | [50] | |
挺水植物 Emergent macrophyte | 菖蒲Acorus calamus | 浸提液Lixivium | 单宁Tannin | 94.6 | [29,51] |
黄菖蒲Iris pseudacorus | 培养滤液Culture filtrate | 脂肪酸类Fatty acid | 70 | [6] | |
香蒲Typha orientalis Presl | 浸提液Lixivium | 单宁Tannin | 16.5 | [29] | |
梭鱼草Pontederia cordata | 共培养、种植水、浸提液Co-culture, planting water and lixivium | 单宁Tannin | 98.5 | [56] | |
水花生Alternanthera philoxeroides | 浸提液Lixivium | 单宁Tannin | 17.6 | [29] | |
慈姑Sagittaria trifolia | 种植水、浸提液Planting water and lixivium | 甾醇类、黄酮类、有机酸类、酯类 Sterol, flavone, organic acids and ester | 89.3 | [30] | |
荸荠Eleocharis dulcis | 种植水、浸提液Planting water and lixivium | 甾醇类、黄酮类、有机酸类、酯类 Sterol, flavone, organic acids and ester | 91.4 | [30] | |
芦竹Arundo donax | 浸提液、高温热解液Lixivium and pyrolytic fluid | 苯酚类Phenol | 95.31 | [52-53] | |
荷花Nelumbo nucifera | 种植水、植物组织碎片Planting water and plant tissue fragment | - | >90 | [54] | |
芦苇Phragmites communis | 化感物质提取物Allelochemicals extract | 酯类Ester | - | [27] | |
鸢尾Iris tectorum | 共培养Co-culture | - | 70.4 | [55] | |
浮水植物 Floating macrophyte | 凤眼莲Eichhornia crassipes | 共培养Co-culture | 有机酸类Organic acids | 85 | [32] |
荇菜Nymphoides peltatum | 共培养Co-culture | - | 94.68 | [34] | |
睡莲Nymphaea tetragona | 种植水、浸提液Planting water and lixivium | - | 50.7 | [35-36] | |
水罂粟Hydrocleys nymphoides | 种植水、共培养Planting water and lixivium | - | 74.59 | [37] | |
大薸Pistia stratiotes | 浸提液Lixivium | - | >80 | [38] | |
槐叶萍Salvinia natans | 共培养Co-culture | 脂肪酸类、酯类、苯类同系物Fatty acid, ester and benzene homologues | 100 | [7] | |
浮萍Lemna minor | 共培养Co-culture | - | 35.77 | [57] |
表2 对铜绿微囊藻具有化感作用的水生植物
Table 2 Aquatic plants that are allelopathic to Microcystis aeruginosa
植物类型Plant type | 植物名称 Botanical name | 实验方式 Experimental method | 主要化感物质 Major allelochemicals | 有效抑制率 Effective inhibition rate/% | 参考文献Reference |
---|---|---|---|---|---|
沉水植物 Submerged macrophyte | 穗花狐尾藻Myriophyllum spicatum | 浸提液Lixivium | 单宁、脂肪酸类Tannin and fatty acid | 58.5 | [42] |
粉绿狐尾藻Myriophyllum aquaticum | 种植水Planting water | - | 89.61 | [4-5] | |
轮叶狐尾藻Myriophyllum verticillatum | 共培养Co-culture | - | >90 | [43] | |
伊乐藻Elodea canadensis | 浸提液Lixivium | 有机酸类Organic acids | 47.7 | [44] | |
苦草Vallisneria natans | 种植水、浸提液Planting water and lixivium | 酚酸类Phenolic acids | 52.9 | [42,45] | |
黑藻Hydrilla verticillata | 种植水Planting water | 有机酸类Organic acids | >80 | [23,46] | |
金鱼藻Antirrhinum majus | 种植水、浸提液Planting water and lixivium | - | 100 | [22] | |
杉叶藻Hippuris vulgaris | 种植水Planting water | - | <50 | [47] | |
小茨藻Najas minor | 共培养Co-culture | - | 94.1 | [48] | |
马来眼子菜Potamogeton malaianus | 浸提液Lixivium | 脂肪酸类、甾醇类Fatty acid and sterol | - | [16] | |
微齿眼子菜Potamogeton maackianus | 共培养Co-culture | - | 100 | [22] | |
篦齿眼子菜Potamogeton pectinatus | 共培养Co-culture | - | 93.6 | [19,49] | |
菹草Potamogeton crispus | 共培养、浸提液Co-culture and lixivium | - | 94.92 | [50] | |
挺水植物 Emergent macrophyte | 菖蒲Acorus calamus | 浸提液Lixivium | 单宁Tannin | 94.6 | [29,51] |
黄菖蒲Iris pseudacorus | 培养滤液Culture filtrate | 脂肪酸类Fatty acid | 70 | [6] | |
香蒲Typha orientalis Presl | 浸提液Lixivium | 单宁Tannin | 16.5 | [29] | |
梭鱼草Pontederia cordata | 共培养、种植水、浸提液Co-culture, planting water and lixivium | 单宁Tannin | 98.5 | [56] | |
水花生Alternanthera philoxeroides | 浸提液Lixivium | 单宁Tannin | 17.6 | [29] | |
慈姑Sagittaria trifolia | 种植水、浸提液Planting water and lixivium | 甾醇类、黄酮类、有机酸类、酯类 Sterol, flavone, organic acids and ester | 89.3 | [30] | |
荸荠Eleocharis dulcis | 种植水、浸提液Planting water and lixivium | 甾醇类、黄酮类、有机酸类、酯类 Sterol, flavone, organic acids and ester | 91.4 | [30] | |
芦竹Arundo donax | 浸提液、高温热解液Lixivium and pyrolytic fluid | 苯酚类Phenol | 95.31 | [52-53] | |
荷花Nelumbo nucifera | 种植水、植物组织碎片Planting water and plant tissue fragment | - | >90 | [54] | |
芦苇Phragmites communis | 化感物质提取物Allelochemicals extract | 酯类Ester | - | [27] | |
鸢尾Iris tectorum | 共培养Co-culture | - | 70.4 | [55] | |
浮水植物 Floating macrophyte | 凤眼莲Eichhornia crassipes | 共培养Co-culture | 有机酸类Organic acids | 85 | [32] |
荇菜Nymphoides peltatum | 共培养Co-culture | - | 94.68 | [34] | |
睡莲Nymphaea tetragona | 种植水、浸提液Planting water and lixivium | - | 50.7 | [35-36] | |
水罂粟Hydrocleys nymphoides | 种植水、共培养Planting water and lixivium | - | 74.59 | [37] | |
大薸Pistia stratiotes | 浸提液Lixivium | - | >80 | [38] | |
槐叶萍Salvinia natans | 共培养Co-culture | 脂肪酸类、酯类、苯类同系物Fatty acid, ester and benzene homologues | 100 | [7] | |
浮萍Lemna minor | 共培养Co-culture | - | 35.77 | [57] |
植物类型Plant type | 植物名称 Botanical name | 实验方式 Experimental method | 主要化感物质 Major allelochemicals | 有效抑制率Effective inhibition rate/% | 参考文献Reference |
---|---|---|---|---|---|
草本植物 Herbaceous plant | 大麦Hordeum vulgare | 浸提液Lixivium | 胺类、酯类、酚酸类Amines, ester and phenolic acids | 74.6 | [60] |
野艾蒿Artemisia lavandulaefolia | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 89.3 | [63] | |
小白酒草Conyza canadensis | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 75.2 | [63] | |
杭白菊Chrysanthemum morifolium | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 4.9 | [63] | |
美人蕉Canna indica | 浸提液Lixivium | 脂肪酸类Fatty acid | 99.37 | [81] | |
加拿大一枝黄花Solidago canadensis | 浸提液Lixivium | - | >80 | [67,82] | |
仙人掌Opuntia stricta | 浸提液Lixivium | - | 100 | [65] | |
滴水观音Alocasia macrorrhiza | 浸提液Lixivium | - | 93 | [68] | |
水稻Oryza sativa | 浸提液Lixivium | - | 98 | [87] | |
黄连Coptis chinensis | 浸提液Lixivium | - | >90 | [88] | |
白屈菜Chelidonium majus | 化感物质提取物 Allelochemicals extract | 生物碱Alkaloid | >90 | [83-84] | |
苣叶秃疮花Dicranostigma lactucoides | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
小果博落回Macleaya microcarpa | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
血根草Sanguinaria canadensis | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
金罂粟Stylophorum lasiocarpum | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
大蒜Allium sativum | 共培养Co-culture | - | 53.42 | [85] | |
香葱Allium fistulosum | 浸提液Lixivium | - | 97.8 | [86] | |
韭菜Allium tuberosum | 浸提液Lixivium | - | 60.8 | [86] | |
一年蓬Erigeron annuus | 浸提液Lixivium | 类萜、有机酸类Terpenes and organic acids | 45.89 | [66] | |
青蒿Artemisia annua | 浸提液Lixivium | 类萜、脂肪酸类Terpenes and fatty acid | 47.33 | [66] | |
互花米草Spartina alterniflora | 浸提液Lixivium | 肉桂酸Cinnamic acid | 99.4 | [62] | |
喜旱莲子草Alternanthera philoxeroides | 浸提液Lixivium | - | 95.14 | [64] | |
木本植物 Woody plant | 雪松Cedrus deodara | 浸提液Lixivium | - | 59.58 | [69] |
枫杨Pterocarya stenoptera | 浸提液Lixivium | - | 61.36 | [69] | |
核桃楸Juglans mandshurica | 浸提液Lixivium | - | 54.57 | [69] | |
核桃Juglans regia | 浸提液Lixivium | - | 57.24 | [69] | |
桉树Eucalyptus robusta Smith | 共培养、浸提液Co-culture、lixivium | - | 85.8 | [71] | |
绿橡木Quercus acuta | 浸提液Lixivium | - | 75 | [73] | |
麻栎Quercus acutissima | 浸提液Lixivium | - | 22 | [73] | |
赤皮椆Quercus gilva | 浸提液Lixivium | - | 37 | [73] | |
柳叶栎Quercus salicina | 浸提液Lixivium | - | 51 | [73] | |
人面子Dracontomelon duperreanum | 浸提液Lixivium | - | 99.6 | [72] | |
臭椿树Ailanthus altissima | 浸提液Lixivium | - | >90 | [75] | |
女贞Ligustrum lucidum | 浸提液Lixivium | - | 100 | [76] | |
广玉兰Magnomia grandiflora | 浸提液Lixivium | - | 97.1 | [89] | |
香樟Cinnamomum camphora | 浸提液Lixivium | - | >70 | [70] | |
梧桐Firmiana platanifolia | 浸提液Lixivium | - | - | [70] | |
银杏Ginkgo biloba | 浸提液Lixivium | - | - | [70] | |
槟榔Areca catechu | 浸提液、植物组织粉Lixivium and plant tissue powder | - | 99 | [79] | |
石榴Punica granatum | 植物组织粉Plant tissue powder | - | 93.7 | [80] |
表3 对铜绿微囊藻具有化感作用的陆生植物
Table 3 Terrestrial plants that are allelopathic to Microcystis aeruginosa
植物类型Plant type | 植物名称 Botanical name | 实验方式 Experimental method | 主要化感物质 Major allelochemicals | 有效抑制率Effective inhibition rate/% | 参考文献Reference |
---|---|---|---|---|---|
草本植物 Herbaceous plant | 大麦Hordeum vulgare | 浸提液Lixivium | 胺类、酯类、酚酸类Amines, ester and phenolic acids | 74.6 | [60] |
野艾蒿Artemisia lavandulaefolia | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 89.3 | [63] | |
小白酒草Conyza canadensis | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 75.2 | [63] | |
杭白菊Chrysanthemum morifolium | 共培养、浸提液 Co-culture and lixivium | 类萜、内脂类Erpenes and lactones | 4.9 | [63] | |
美人蕉Canna indica | 浸提液Lixivium | 脂肪酸类Fatty acid | 99.37 | [81] | |
加拿大一枝黄花Solidago canadensis | 浸提液Lixivium | - | >80 | [67,82] | |
仙人掌Opuntia stricta | 浸提液Lixivium | - | 100 | [65] | |
滴水观音Alocasia macrorrhiza | 浸提液Lixivium | - | 93 | [68] | |
水稻Oryza sativa | 浸提液Lixivium | - | 98 | [87] | |
黄连Coptis chinensis | 浸提液Lixivium | - | >90 | [88] | |
白屈菜Chelidonium majus | 化感物质提取物 Allelochemicals extract | 生物碱Alkaloid | >90 | [83-84] | |
苣叶秃疮花Dicranostigma lactucoides | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
小果博落回Macleaya microcarpa | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
血根草Sanguinaria canadensis | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
金罂粟Stylophorum lasiocarpum | 浸提液Lixivium | 生物碱Alkaloid | - | [83] | |
大蒜Allium sativum | 共培养Co-culture | - | 53.42 | [85] | |
香葱Allium fistulosum | 浸提液Lixivium | - | 97.8 | [86] | |
韭菜Allium tuberosum | 浸提液Lixivium | - | 60.8 | [86] | |
一年蓬Erigeron annuus | 浸提液Lixivium | 类萜、有机酸类Terpenes and organic acids | 45.89 | [66] | |
青蒿Artemisia annua | 浸提液Lixivium | 类萜、脂肪酸类Terpenes and fatty acid | 47.33 | [66] | |
互花米草Spartina alterniflora | 浸提液Lixivium | 肉桂酸Cinnamic acid | 99.4 | [62] | |
喜旱莲子草Alternanthera philoxeroides | 浸提液Lixivium | - | 95.14 | [64] | |
木本植物 Woody plant | 雪松Cedrus deodara | 浸提液Lixivium | - | 59.58 | [69] |
枫杨Pterocarya stenoptera | 浸提液Lixivium | - | 61.36 | [69] | |
核桃楸Juglans mandshurica | 浸提液Lixivium | - | 54.57 | [69] | |
核桃Juglans regia | 浸提液Lixivium | - | 57.24 | [69] | |
桉树Eucalyptus robusta Smith | 共培养、浸提液Co-culture、lixivium | - | 85.8 | [71] | |
绿橡木Quercus acuta | 浸提液Lixivium | - | 75 | [73] | |
麻栎Quercus acutissima | 浸提液Lixivium | - | 22 | [73] | |
赤皮椆Quercus gilva | 浸提液Lixivium | - | 37 | [73] | |
柳叶栎Quercus salicina | 浸提液Lixivium | - | 51 | [73] | |
人面子Dracontomelon duperreanum | 浸提液Lixivium | - | 99.6 | [72] | |
臭椿树Ailanthus altissima | 浸提液Lixivium | - | >90 | [75] | |
女贞Ligustrum lucidum | 浸提液Lixivium | - | 100 | [76] | |
广玉兰Magnomia grandiflora | 浸提液Lixivium | - | 97.1 | [89] | |
香樟Cinnamomum camphora | 浸提液Lixivium | - | >70 | [70] | |
梧桐Firmiana platanifolia | 浸提液Lixivium | - | - | [70] | |
银杏Ginkgo biloba | 浸提液Lixivium | - | - | [70] | |
槟榔Areca catechu | 浸提液、植物组织粉Lixivium and plant tissue powder | - | 99 | [79] | |
石榴Punica granatum | 植物组织粉Plant tissue powder | - | 93.7 | [80] |
[1] | 王娜, 倪利晓, 刘烜瑜, 等. 一种新型缓释微粒的抑藻机制研究[J]. 四川环境, 2020,39(2):1-8. |
Wang N, Ni LX, Liu XY, et al. Study on algae inhibition mechanism of a novel sustained release Microparticles[J]. Sichuan Environment, 2020,39(2):1-8. | |
[2] | 闫海, 王华生, 刘晓璐, 等. 微囊藻毒素微生物降解途径与分子机制研究进展[J]. 环境科学, 2014,35(3):1205-1214. |
Yan H, Wang HS, Liu XL, et al. Advances in the pathway and molecular mechanism for the biodegradation of microcystins[J]. Environmental Science, 2014,35(3):1205-1214. | |
[3] |
Wang XF, Li YT, Xiao HR, et al. Genotoxicity of microcystin-LR in mammalian cells:Implication from peroxynitrite produced by mitochondria[J]. Ecotoxicology and Environmental Safety, 2020,195:110408.
doi: 10.1016/j.ecoenv.2020.110408 URL |
[4] | Wang HP, Liu F. Allelopathic effects of Myriophyllum aquaticum on two cyanobacteria of Anabaena flos-aquae and Microcystis aeruginosa[J]. Bulletin of Environmental Contamination & Toxicology, 2017,98(4):556-561. |
[5] |
Wu C, Chang XX, Dong HJ, et al. Allelopathic inhibitory effect of Myriophyllum aquaticum(VelL.)Verdc. on Microcystis aeruginosa and its physiological mechanism[J]. Acta Ecologica Sinica, 2008,28(6):2595-2603.
doi: 10.1016/S1872-2032(08)60061-X URL |
[6] | 王昊. 刈割诱导黄菖蒲化感抑藻效应研究[C]. 中国植物保护学会植物化感作用专业委员会. 中国第九届植物化感作用学术研讨会论文摘要集, 2019:29. |
Wang H. Study on allelopathic inhibition of alga of Acorus tatarinowii by cutting[C]. Professional Committee of Plant Allelopathy of China Society of Plant Protection. Abstracts of papers from the 9th Chinese Symposium on Plant Allelopathy, 2019:29. | |
[7] | 张胜娟. 槐叶萍对富营养盐的耐受性及其抑藻效应[D]. 芜湖:安徽师范大学, 2015. |
Zhang SJ. Inhibitory effect of Salvinia natans(L.)All. on algae and its tolerance to the stress of eutrophication[D]. Wuhu:Anhui Normal University, 2015. | |
[8] | Rice EL. Allelopathy[M]. The second edition. London: Academic Press, 1984: 1-2. |
[9] | Hasler AD, Jones E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers[J]. John Wiley & Sons, Ltd, 1949,30(3):359-364. |
[10] | 钱燕萍, 赵楚, 田如男. 水生植物对藻类的化感作用研究进展[J]. 生物学杂志, 2018,35(6):95-97. |
Qian YP, Zhao C, Tie RN. Research advances in inhibitory effects on phytoplankton mediated by aquatic plants[J]. Journal of Biology, 2018,35(6):95-97. | |
[11] | 王安可, 毕毓芳, 温星, 等. 植物化感物质的研究现状[J]. 分子植物育种, 2019,17(17):5829-5835. |
Wang AK, Bi YF, Wen X, et al. Research advances of plant allelochemicals[J]. Molecular Plant Breeding, 2019,17(17):5829-5835. | |
[12] | 龚梦丹. 沉水植物对水体水质净化效果的研究[J]. 环境与发展, 2020,32(2):95-97. |
Gong MD. Purification efficiency of submerged macrophyte for eutrophic water[J]. Environment and Development, 2020,32(2):95-97. | |
[13] |
Gross EM, Meyer H, Schilling G. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum[J]. Phytochemistry, 1996,41(1):133-138.
doi: 10.1016/0031-9422(95)00598-6 URL |
[14] | Nakai S, Inoue Y, Hosomi M, et al. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa[J]. Water Research, 2000,34(11):0-3032. |
[15] |
He Y, Zhou QH, Liu BY, et al. Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatumin co-culture system[J]. Journal of Applied Phycology, 2016,28(5):2805-2814.
doi: 10.1007/s10811-016-0814-7 URL |
[16] | 胡陈艳, 葛芳杰, 张胜花. 马来眼子菜体内抑藻物质分离及常见脂肪酸抑藻效应[J]. 湖泊科学, 2010,22(4):569-576. |
Hu CY, Ge FJ, Zhang SH. Isolation of antialgal compounds from Potamogeton malaianus and algal inhibitory effects of common fatty acids[J]. Journal of Lake Sciences, 2010,22(4):569-576. | |
[17] | 黄新颖, 种云霄, 汤仲恩. 3种沉水植物水培液中抑藻活性物质的分析[J]. 华南农业大学学报, 2010,31(3):19-23. |
Huang XY, Zhong YX, Tang ZE, et al. Analysis on antialgal allelochemicals in culture solutions of three submerged macrophytes[J]. Journal of South China Agricultural University, 2010,31(3):19-23. | |
[18] |
Della GM, Fiorentino A, Isidori M. Antialgal furano-diterpenes from Potamogeton natans L.[J]. Phytochemistry, 2001,58:299-304.
doi: 10.1016/S0031-9422(01)00203-5 URL |
[19] | 李晨露, 常孟阳, 董静. 富藻养殖水体中金鱼藻和篦齿眼子菜的抑藻效果研究[J]. 渔业科学进展, 2020,41(4):125-133. |
Li CL, Chang MY, Dong J, et al. Responses of eutrophic ponds to Ceratophyllum demersum and Potamogeton pectinatus[J]. Progress in Fishery Sciences, 2020,41(4):125-133. | |
[20] | 朱小琴, 刀国华, 陶益, 等. 典型植物化感物质对铜绿微囊藻生长的抑制效果评价[J]. 中国环境科学, 2020,40(5):2230-2237. |
Zhu XQ, Dao GH, Tao Y, et al. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aerugi-nosa[J]. China Environmental Science, 2020,40(5):2230-2237. | |
[21] | 段书惠. 植物化感物质抑藻及机理的研究[D]. 天津:天津科技大学, 2018. |
Duan SH. Study on antifungal and mechanism of plant allelochemicals[D]. Tianjin:Tianjin University of Science and Technology, 2018. | |
[22] | 鲜啟鸣, 陈海东, 邹惠仙, 等. 四种沉水植物的克藻效应[J]. 湖泊科学, 2005(1):75-80. |
Xian QM, Chen HD, Zou HX, et al. Allelopathic effects of four submerged macrophytes on Microcystis aeruginosa[J]. Journal of Lake Science, 2005(1):75-80. | |
[23] | 张之浩. 富营养化水体原位生态修复中沉水植物的功能研究[D]. 长沙:中南林业科技大学, 2018. |
Zhang ZH. Study on the functions of submerged macrophytes in insitu ecological restoration of eutrophic waters[D]. Changsha:Central South University of Forestry and Technology, 2018. | |
[24] | 高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J]. 湖泊科学, 2011,23(5):761-766. |
Gao YN, Liu BY, Wang J, et al. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa[J]. Journal of Lake Sciences, 2011,23(5):761-766. | |
[25] |
Zhang SH, Gaboury B. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome[J]. Aquatic Toxicology, 2019,215:105271.
doi: 10.1016/j.aquatox.2019.105271 URL |
[26] | 张维昊, 周连凤, 吴小刚, 等. 菖蒲对铜绿微囊藻的化感作用[J]. 中国环境科学, 2006(3):355-358. |
Zhang WH, Zhou LF, Wu XG, et al. Allelopathic effect of Acorus calamus on Microcystis aeruginosa[J]. China Environmental Science, 2006,26(3):355-358. | |
[27] | 李锋民, 胡洪营, 种云霄, 等. 芦苇化感物质EMA对铜绿微囊藻生理特性的影响[J]. 中国环境科学, 2007(3):377-381. |
Li FM, Hu HY, Chong YX, et al. Influence of EMA isolated from Phragmites communis on physiological characters of Microcystis aeruginosa[J]. China Environmental Science, 2007(3):377-381. | |
[28] | 于淑池, 姜燕, 邓红英, 等. 芦苇秆浸出液对铜绿微囊藻抑制作用的研究[J]. 淡水渔业, 2013,43(2):66-70. |
Yu SC, Jiang Y, Deng HY, et al. Inhibition of reed lixivium on Microcystis aeruginosa growth[J]. Freshwater Fisheries, 2013,43(2):66-70. | |
[29] | 王红强, 孔海燕, 张列宇. 典型挺水植物多酚含量及其抑藻活性的测定[J]. 安全与环境工程, 2017,24(2):75-78. |
Wang HQ, Kong HY, Zhang LY. Determination of polyphenol content and antialgal activities of typical emergent plants[J]. Safety and Environmental Engineering, 2017,24(2):75-78. | |
[30] | 李江. 挺水植物对城市景观水体铜绿微囊藻化感抑制作用与机理研究[D]. 长沙:湖南大学, 2017. |
Li J. The allelopathic effect and underlying mechanism of emergent plants on the growth of Microcystis aeruginosa in landscape water[D]. Changsha:Hunan University, 2017. | |
[31] | 张娉杨. 两种挺水植物对铜绿微囊藻抑制作用的研究[D]. 长沙:湖南大学, 2014. |
Zhang PY. Study on the inhibitory effect of two emerged plants on Microcystis aeruginosa[D]. Changsha:Hunan University, 2014. | |
[32] | 杨小杰, 韩士群, 唐婉莹, 等. 凤眼莲对铜绿微囊藻生理、细胞结构及藻毒素释放与削减的影响[J]. 江苏农业学报, 2016,32(2):376-382. |
Yang XJ, Hang SQ, Tang WY, et al. Physiological characteristics and cell structure of Microcystis aeruginosa and microcystin release and reduction in Eichhornia crassipes grown water[J]. Jiangsu Journal of Agricultural Sciences, 2016,32(2):376-382. | |
[33] | 刘洁生, 陈芝兰, 杨维东, 等. 凤眼莲根系丙酮提取物抑制赤潮藻类生长的机制研究[J]. 环境科学学报, 2006(5):815-820. |
Liu JS, Chen ZL, Yang WD, et al. Inhibitory mechanism of acetone extract from Eichhornia crassipes root on Alexandrium tamarense[J]. Acta Scientiae Circumstantiae, 2006,26(5):815-820. | |
[34] | 汪丽, 王国祥, 唐晓燕, 等 . 荇菜( Nymphoides peltatum)对铜绿微囊藻(Microcystis aeruginosa)生长的抑制效应及其机制[J]. 生态与农村环境学报, 2010,26(3):257-263. |
Wang L, Wang GX, Tang XY, et al. Inhibitory effect of Nymphoides peltatum on Microcystis aeruginosa and its mechanism[J]. Journal of Ecology & Rural Environment, 2010,26(3):257-263. | |
[35] | 陈建中, 李利芳, 张海洋, 等. 芦竹和睡莲对铜绿微囊藻的生长抑制效应[J]. 环境科学与技术, 2011,34(7):35-37, 82. |
Chen JZ, Li LF, Zhang HY, et al. Inhibitory effect of Arundo donax and Nymphaea tetragona on Microcystis aeruginosa[J]. Environmental Science & Technology, 2011,34(7):35-37, 82. | |
[36] | 李磊, 侯文华. 荷花和睡莲种植水对铜绿微囊藻生长的抑制作用研究[J]. 环境科学, 2007(10):2180-2186. |
Li L, Hou WH. Inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa[J]. Environmental Science, 2007(10):2180-2186. | |
[37] | 田如男, 孙欣欣, 魏勇, 等. 水生花卉对铜绿微囊藻、斜生栅藻和小球藻生长的影响[J]. 生态学杂志, 2011,30(12):2732-2738. |
Tie RN, Sun XX, Wei Y, et al. Effects of hydrophytes on the growth of Microcystis aeruginosa, Scenedesmus obliqnus and Chlorella vulgaris[J]. Chinese Journal of Ecology, 2011,30(12):2732-2738. | |
[38] | Wu X, Wu H, Ye J, et al. Study on the release routes of allelochemicals from pistia stratiotes linn. and its anti-cyanobacteria mechanisms on Microcystis aeruginosa[J]. Environmental Science & Pollution Research, 2015,22(23):18994-19001. |
[39] | Chen XC, Kong HN, He SB, et al. Reducing harmful algae in raw water by light-shading[J]. Process Biochemistry, 2008,44(3):367-360. |
[40] | 边归国. 浮水植物化感作用抑制藻类的机理与应用[J]. 水生生物学报, 2012,36(5):978-982. |
Bian GG. Allelopathic mechanism of floating plants on algae and the application[J]. Acta Hydrobiologica Sinica, 2012,36(5):978-982. | |
[41] | 张之浩, 吴晓芙, 陈永华. 湿地水生植物化感抑藻研究进展[J]. 环境与可持续发展, 2015,40(5):71-74. |
Zhang ZH, Wu XF, Chen YH. Progress of research on inhibitory allelopathy of wetland aquatic plant spesies on algae[J]. Environment and sustainable development, 2015,40(5):71-74. | |
[42] |
Zhu J, Liu B, Wang J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte(Myriophyllum spicatum)and its secretion[J]. Aquatic Toxicology, 2010,98(2):196-203.
doi: 10.1016/j.aquatox.2010.02.011 URL |
[43] | 高浩杰. 轮叶狐尾藻对镉和铜绿微囊藻污染水体的净化能力研究[D]. 成都:四川农业大学, 2018. |
Gao HJ. Study on the purification of Myriophyllum verticillatum L. to cadmium and Microcystis aeruginosa polluted water[D]. Chengdu:Sichuan Agricultural University, 2018 | |
[44] | 王红强, 朱慧杰, 张丽萍, 等. 伊乐藻中有机酸的GC-MS分析及其抑藻作用研究[J]. 环境科学与技术, 2011,34(7):23-26+174. |
Wang HQ, Zhu HJ, Zhang LP, et al. Organic acid from Elodea nuttallii by GC-MS and its inhibitory effects on algae growth[J]. Environmental ence & Technology, 2011,34(7):23-26+174. | |
[45] | 贾惠雁, 陈永华, 陈明利, 等. 5种水生植物对铜绿微囊藻的抑制与生理影响研究[J]. 农业现代化研究, 2019,40(6):1056-1064. |
Jia HY, Chen YH, Chen ML, et al. Allelopathic effect of five aquatic plants on Microcystis aeruginosa[J]. Research of Agricultural Modernization, 2019,40(6):1056-1064. | |
[46] | 王飞, 蔡秋童. 轮叶黑藻浸提液对蓝藻水华的抑制作用[J]. 生物学通报, 2011,46(7):55-56. |
Wang F, Cai QT. Inhibition effect of extract solution from hydrilla verticillata(Linn. f.)on cyanobacterial blooms[J]. Bulletin of Biology, 2011,46(7):55-56. | |
[47] | 汤仲恩, 种云霄, 朱文玲, 等. 几种观赏型沉水植物对富营养化蓝绿藻类的抑制作用[J]. 生态环境, 2007,16(6):1637-1642. |
Tang ZE, Chong YX, Zhu WL, et al. Allelopathic effects of three ornamental submerged macrophytes on five eutrophic algae[J]. Ecology and Environment, 2007,16(6):1637-1642. | |
[48] |
Zhang TT, Liu L, Yang XH, et al. Allelopathic control of freshwater phytoplankton by the submerged macrophyte Najas minor All[J]. Acta Ecologica Sinica, 2014,34(6):351-355.
doi: 10.1016/j.chnaes.2014.09.003 URL |
[49] |
Nan Z, Min J, Tao P, et al. Application of box-behnken design in optimization of allelopathic effects of Potamogeton pectinatus against Microcystis aeruginosa[J]. Transactions of Tianjin University, 2014,20(5):344-349.
doi: 10.1007/s12209-014-2205-y URL |
[50] | 李源, 闫浩, 施媚, 等. 菹草与铜绿微囊藻化感互作及其对藻抗氧化能力的影响[J]. 安徽师范大学学报:自然科学版, 2015,38(6):572-575, 602. |
Li Y, Yan H, Shi M, et al. Interactions between Potamogeton crispus and Microcystis aeruginosa and the effect on antioxidant activites of the algae[J]. Journal of Anhui Normal University:Natural Science, 2015,38(6):572-575, 602. | |
[51] |
Zhang SH, Zhang SY, Li G. Acorus calamus root extracts to controlharmful cyanobacteria blooms[J]. Ecological Engineering, 2016,94:95-101.
doi: 10.1016/j.ecoleng.2016.05.053 URL |
[52] | 王佳怡. 芦竹热解液对铜绿微囊藻的抑制作用[D]. 青岛:青岛大学, 2014. |
Wang JY. Inhibition of the pyrolysis liquid of Arundo donax to Microcystis aeruginosa[D]. Qingdao:Qingdao University, 2014. | |
[53] | Hong Y, Hu HY, Sakoda A, et al. Straw preservation effects of Arundo donax L. on its allelopathic activity to toxic and bloom-forming Microcystis aeruginosa[J]. Water Science & Technology, 2011,63(8):1566. |
[54] | 朱传雪. 巢湖水华藻类的分离及荷花的抑藻效应研究[D]. 合肥:合肥工业大学, 2019. |
Zhu CX. Isolation of algae from Chaohu blooming lake and inhibitory effects of Lotus on cyanobacteria[D]. Hefei:Hefei University of Technology, 2019. | |
[55] | 张景雯, 田如男. 四种植物对模拟的城市景观污水的净化效果[J]. 湿地科学, 2018,16(1):85-92. |
Zhang JW, Tie RN. Purification effect of four kinds of aquatic plants on simulated urban landscape polluted water[J]. Wetland Science, 2018,16(1):85-92. | |
[56] | Qian YP, Xu N, Liu J, et al. Inhibitory effects of Pontederia cordata on the growth of Microcystis aeruginosa[J]. Water Science and Technology, 2017(1):99-107. |
[57] | 周晨, 吴迪, 靳洁莉, 等. 浮萍与铜绿微囊藻共培养初探[J]. 兰州大学学报:自然科学版, 2019,55(4):485-489. |
Zhou C, Wu D, Jin JL, et al. A preliminary study on the co-culture of Duckweed and Microcystis aeruginosa[J]. Journal of Lanzhou University:Natural Sciences, 2019,55(4):485-489. | |
[58] | 孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用及其应用[M]. 北京: 高等教育出版社, 2016. |
Kong CH, Hu F, Wang P. Allelopathy[M]. Beijing: Higher Education Press, 2016. | |
[59] | 边归国. 陆生植物化感作用抑制藻类生长的研究进展[J]. 环境科学与技术, 2012,35(2):90-95. |
Bian GG. Review on inhibition of terrestrial plant allelopathy of algae growth[J]. Environmental Science & Technology, 2012,35(2):90-95. | |
[60] | 邓继选, 邹华, 庄严. 大麦秸秆抑藻物质的分离及其抑藻作用研究[J]. 安全与环境学报, 2013,13(6):39-43. |
Deng JX, Zou H, Zhuang Y. On the isolation of anti-algal compounds from the Wheat straw and the algae inhibiting effect[J]. Journal of Safety and Environment, 2013,13(6):39-43. | |
[61] |
Mecina GF, Dokkedal AL, Saldanha LL, et al. Response of Microcystis aeruginosa BCCUSP 232 to barley(Hordeum vulgare L.) straw degradation extract and fractions[J]. The Science of the Total Environment, 2017, 599-600:1837-1847.
doi: 10.1016/j.scitotenv.2017.05.156 URL |
[62] |
Yuan RY, Li Y, Li JH, et al. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms[J]. Science of the Total Environment, 2020,712:136332.
doi: 10.1016/j.scitotenv.2019.136332 URL |
[63] | 徐芙清, 何伟, 郑星, 等. 野艾蒿及其有机提取物对铜绿微囊藻生长的抑制作用[J]. 生态学报, 2010,30(3):745-750. |
Xu FQ, He W, Zheng X, et al. Inhibitive effects on Microcystis aeruginosa by Artemisia lavandulaefoli and its three organic solvents extracts[J]. Acta Ecologica Sinica, 2010,30(3):745-750. | |
[64] | 程萌, 李丹, 张猛. 入侵植物喜旱莲子草对铜绿微囊藻的化感作用研究[J]. 安徽农学通报, 2019,25(12):32-35. |
Cheng M, Li D, Zhang M. Study on the allelopathic effects of Alternanthera philoxeroides on Microcystis aeruginosa[J]. Anhui Agricultural Science Bulletin, 2019,25(12):32-35. | |
[65] | 薛维纳, 彭岩波, 陈阳. 仙人掌浸提液对铜绿微囊藻生长的影响[J]. 山东建筑大学学报, 2012,27(1):55-58, 110. |
Xue WN, Peng YB, Chen Y. Inhibitory effect of extract from Opuntia stricta on the growth of Microcystis aeruginosa[J]. Journal of Shandong Jianzhu University, 2012,27(1):55-58, 110. | |
[66] |
Ni LX, Hao XY, Li SY, et al. Inhibitory effects of the extracts with different solvents from three compositae plants on cyanobacterium Microcystis aeruginosas[J]. Science China Chemistry, 2011,54(7):1123-1129.
doi: 10.1007/s11426-011-4269-z URL |
[67] | 白羽, 黄莹莹, 孔海南, 等. 加拿大一枝黄花化感抑藻效应的初步研究[J]. 生态环境学报, 2012,21(7):1296-1303. |
Bai Y, Huang YY, Kong HN, et al. Studies on the allelopathic effects of Solidago canadensis L. on algae[J]. Ecology and Environmental Sciences, 2012,21(7):1296-1303. | |
[68] | 朱佳, 赵静静, 汪小雄. 滴水观音不同器官浸出液对铜绿微囊藻、针杆藻化感作用研究[J]. 深圳职业技术学院学报, 2014,13(3):81-84. |
Zhu J, Zhao JJ, Wang XX. Allelopathic effect on Microcystis aeruginosa and Synedra acusvar by different organs’ extract of a macrorrhiza[J]. Journal of Shenzhen Polytechnic, 2014,13(3):81-84. | |
[69] | 马妍, 石福臣, 柴民伟, 等. 几种植物对铜绿微囊藻和莱茵衣藻的影响[J]. 南开大学学报:自然科学版, 2010,43(3):81-87. |
Ma Y, Shi FC, Chai MW, et al. Effects of allelochemicals from several terrestrial plants on Microcystis aeruginosa and Chlamydo-monas reinhardtii[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2010,43(3):81-87. | |
[70] | 石雨鑫. 常见行道树凋落物提取液对水华藻的抑藻效果研究[C], 2018年中国水产学会学术年会论文摘要集, 中国水产学会, 2018. |
Shi YX. Inhibitory effect of litter extracts of common road tree on algae bloom species[C]. Abstract collection of papers from the academic Annual meeting of the Chinese Fishery Society in 2018, The China Society of Fisheries, 2018. | |
[71] |
Zhao W, Zheng Z, Zhang JL, et al. Evaluation of the use of eucalyptus to control algae bloom and improve water quality[J]. Science of the Total Environment, 2019,667:412-418.
doi: 10.1016/j.scitotenv.2019.02.276 pmid: WOS:000461676600043 |
[72] | Wang XX, Jiang CC, Szeto YT, et al. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa:physiological and morphological aspects[J]. Environmental Science & Pollution Research, 2016,23(9):8731-8740. |
[73] |
Park MH, Hwang SJ, Ahn CY, et al. Screening of seventeen Oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa kütz em. Elenkin[J]. Bulletin of Environmental Contamination and Toxicology, 2006,77(1):9-14.
doi: 10.1007/s00128-006-1025-8 URL |
[74] | 周丽, 付子轼, 陈桂发, 等. 陆生植物化感抑制铜绿微囊藻作用效应及机制研究进展[J]. 应用生态学报, 2018,29(5):1715-1724. |
Zhou L, Fu ZS, Chen GF, et al. Research advance in allelopathy effect and mechanism of terrestrial plants in inhibition of Microcystis aeruginosa[J]. The Journal of Applied Ecology, 2018,29(5):1715-1724. | |
[75] |
Man PP, Pei HY, Hu WR, et al. Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release[J]. Chemosphere, 2015,141:219-226.
doi: 10.1016/j.chemosphere.2015.07.057 URL |
[76] |
Wu Y, Ge HH, Zhou ZZ. Effects of Fructus ligustri lucidion the growth, cell integrity, and metabolic activity of the Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2015,22:8471-8479.
doi: 10.1007/s11356-014-3997-y URL |
[77] | 张薛, 胡洪营. 桔皮水提液对铜绿微囊藻生长的抑制效果研究[J]. 环境科学研究, 2008(5):43-48. |
Zhang X, Hu HY. Inhibitory effect of extract from Citrus peel on growth of Microcystis aeruginosa[J]. Research of Environmental Sciences, 2008(5):43-48. | |
[78] | Chen JZ, Liu ZL, Ren GJ, et al. Control of Microcystis aeruginosa TH01109 with batangas mandarinskin and dwarf banana peel[J]. Water SA, 2004,30(2):279-282. |
[79] | 许志兰. 不同处理方法对槟榔抑藻效果的影响[C]. 北京水问题研究与实践(2011年):中国水利水电出版社, 2012: 86-89. |
Xu ZL. Effects of different treatments of Areca on alga suppression[C]. Research and Practice of Water Problem in Beijing(2011):China Water&Power Press, 2012:86-89. | |
[80] |
Chen L, Wang Y, Shi L, et al. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth[J]. Environmental Science and Pollution Research, 2019,26(22), 22389-22399.
doi: 10.1007/s11356-019-05507-1 URL |
[81] | 刘晓宇, 傅海燕, 黄国和, 等. 美人蕉有机酸组分对铜绿微囊藻的化感作用[J]. 环境工程学报, 2015,9(12):5769-5774. |
Liu XY, Fu HY, Huang GH, et al. Allelopathic effect of organic acids from Canna indica on Microcystis aeruginosa[J]. Chinese Journal of Environmental Engineering, 2015,9(12):5769-5774. | |
[82] |
Huang YY, Bai Y, Wang Y, et al. Solidago canadensis L. extracts to control algal(Microcystis)blooms in ponds[J]. Ecological Engineering, 2014,70:263-267.
doi: 10.1016/j.ecoleng.2014.05.025 URL |
[83] |
Jancula D, Suchomelova J, Gregor J, et al. Effects of aqueous extracts from five species of the family Papaveraceae on selected aquatic organisms[J]. Environmental Toxicology, 2007,22:480-486.
doi: 10.1002/(ISSN)1522-7278 URL |
[84] | 刘彦彦, 邵继海, 刘德明, 等. 白屈菜红碱对铜绿微囊藻生长和光合系统的影响[J]. 水生生物学报, 2015,39(1):149-154. |
Liu YY, Shao JH, Liu DM, et al. Effect of chelerythrine on the growth and photosynthetic system of Microcystis aeruginosa[J]. Acta Hydrobiologica Sinica, 2015,39(1):149-154. | |
[85] | 董龙香, 胡利静, 胡鲲, 等. 大蒜对铜绿微囊藻的化感抑制作用[J]. 江西农业大学学报, 2016,38(6):1167-1173. |
Dong LX, Hu LJ, Hu K, et al. The Allelopathic inhibition of Allium sativum on Microcystis aeruginosa[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016,38(6):1167-1173. | |
[86] | 康露伟, 侯雨晴, 杨晓辉, 等. 两种葱属植物的化感抑藻效应[J]. 卫生研究, 2015,44(3):462-465. |
Kang LW, Hou YQ, Yang XH, et al. Allelopathic inhibitory effects on Microcystis aeruginosa of two species of allium plants[J]. Journal of Hygiene Research, 2015,44(3):462-465. | |
[87] |
Hua Q, Liu YG, Yan ZL, et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2018,148:953-959.
doi: 10.1016/j.ecoenv.2017.11.049 URL |
[88] | 胡利静, 肖艳翼, 刘腾飞, 等. 10种药物材料对铜绿微囊藻的抑制作用[J]. 环境污染与防治, 2016,38(7):49-55. |
Hu LJ, Xiao YY, Liu TF, et al. The inhibition of 10 kinds of drug materials on Microcystis aeruginosa[J]. Environmental Pollution & Control, 2016,38(7):49-55. | |
[89] | 何梅. 几种植物对铜绿微囊藻和水华鱼腥藻抑制作用[J]. 通化师范学院学报, 2014,35(12):52-54, 85. |
He M. Inhibitory effects of several plants on Microcystis aeruginosa and Anabaena flos-aquae[J]. Journal of Tonghua Normal University, 2014,35(12):52-54, 85. | |
[90] | 谢树莲, 王捷, 刘琪, 等. 植物化感作用控藻研究进展[J]. 山西大学学报:自然科学版, 2017,40(3):652-660. |
Xie SL, Wang J, Liu Q, et al. Research progresses on plant allelopathic effects for algal control[J]. Journal of Shanxi University:Natural Science Edition, 2017,40(3):652-660. | |
[91] | 王捷. 汾河太原河段水华藻及生物源物质抑藻机理研究[D]. 太原:山西大学, 2017. |
Wang J. Studies on blooms and inhibitory mechanisms of biological originated substances to the algae in Taiyuan region of the fenhe river[D]. Taiyuan:Shanxi university, 2017. | |
[92] | 胡利静, 肖艳翼, 刘腾飞, 等. 植物化感抑藻作用及机制的研究[J]. 水产养殖, 2016,37(10):41-47. |
Hu LJ, Xiao YY, Liu TF, et al. The study on mechanism of the allelopathy in algals inhibition[J]. Journal of Aquaculture, 2016,37(10):41-47. | |
[93] |
Ni LX, Rong SY, Gu GX, et al. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases[J]. Chemosphere, 2018,212:654-661.
doi: 10.1016/j.chemosphere.2018.08.045 URL |
[94] | 张欣, 卢学强, 李玉鑫, 等. 菹草对普通小球藻和铜绿微囊藻的化感作用[J]. 中国给水排水, 2020,36(7):68-73. |
Zhang X, Lu XQ, Li YX, et al. Allelopathic effect of Potamogeton crispus on Chlorella vulgaris and Microcystis aeruginosa[J]. China Water & Wastewater, 2015,36(7):68-73. | |
[95] |
Zhu JY, Liu BY, Wang J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte(Myriophyllum spicatum)and its secretion[J]. Aquatic Toxicology, 2010,98(2):196-203.
doi: 10.1016/j.aquatox.2010.02.011 URL |
[96] | Durrant JR, Giorgi LB, Barber J, et al. Characterization of triplet states in isolated Photosystem II reaction centers:oxy-gen quenching as a mechanisms of photodamage[J]. BiochimBiophys Acta, 1990,1017:167-175. |
[97] | 吴颖川, 邹琳, 汪瑾, 等. EGCG对铜绿微囊藻的抑制效应及机制研究[J]. 南京农业大学学报, 2016,39(1):78-83. |
Wu YC, Zou L, Wang J, et al. The inhibitory effect and mechanism of EGCG on Microcystis aeruginosa[J]. Journal of Nanjing Agricultural University, 2016,39(1):78-83. | |
[98] | Polle A. Dissecting the superoxide dismutase -ascorbateperoxidase -glutathione pathway in chloroplasts by metabolic modeling:computer simulations as a step towards flux analysis[J]. Plant Physiol, 2001(126):445-462. |
[99] | 王婧怡, 邬彩霞, 赵国琦. 植物化感作用的分子机理及差异蛋白质组学研究进展[J]. 江苏农业科学, 2017,45(13):8-11. |
Wang JY, Wu CX, Zhao GQ. Advances in molecular mechanism and differential protemics of allelopathy in plants[J]. Jiangsu Agricultural Sciences, 2017,45(13):8-11. | |
[100] |
Lu YP, Wang J, Yu Y, et al. Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress[J]. Chemosphere, 2014,117:164-169
doi: 10.1016/j.chemosphere.2014.06.040 URL |
[101] |
Bi XD, Zhang SL, Dai W, et al. Analysis of effects of berberine on the photosynjournal of Microcystis aeruginosa at gene transcriptional level[J]. CLEAN-Soil, Air, Water, 2015,43(1):44-50.
doi: 10.1002/clen.201300586 URL |
[102] | 黄莹莹, 白羽, 王艳, 等. 基于iTraq技术的加拿大一枝黄花提取物作用下铜绿微囊藻细胞差异表达蛋白[J]. 中国环境科学, 2015,35(6):1822-1830. |
Huang YY, Bai Y, Wang Y, et al. Differentially expressed proteins in Microcystic aeruginosa with Solidago canadensis L. extracts using iTraq labeling technique[J]. China Environmental Science, 2015,35(6):1822-1830. |
[1] | 张俊锋, 李孟珂, 吴志浩, 崔晓龙, 肖炜, 张仕颖. 噬菌体DCEAV-31和DCEIV-9对溶藻菌溶藻特性的影响[J]. 生物技术通报, 2022, 38(11): 250-257. |
[2] | 师小平, 陈银萍, 闫志强, 罗永清, 李玉强, 丁浚刚, 颉海帆. 植物化感作用研究进展[J]. 生物技术通报, 2020, 36(6): 215-222. |
[3] | 纪美辰, 张继权, 彭越, 马齐云. 水培条件下几种水生植物对铅的抗性研究[J]. 生物技术通报, 2017, 33(8): 120-125. |
[4] | 刘胜利, 马世尧, 吴晓飞, 史军娜, 周晓阳, 兰小中, 卢存福. 小麦和绿豆根形态及细胞结构对喜马拉雅紫茉莉根水浸提液的化感作用响应[J]. 生物技术通报, 2017, 33(12): 112-118. |
[5] | 江文静, 张军毅, 杜阳, 孙丽伟. 以核糖体蛋白质鉴别铜绿微囊藻的应用分析[J]. 生物技术通报, 2017, 33(10): 117-124. |
[6] | , 王赟, 张业猛, 李佩佩. 醋酸钙不动杆菌的分离鉴定及溶藻特性[J]. 生物技术通报, 2015, 31(3): 140-145. |
[7] | 廖博儒;王万贤;张佳磊;张勇;侯金华;舒丽慧;. 益母草(Leonurus artemisia)灭螺效果研究[J]. , 2006, 0(S1): 403-406. |
[8] | 巩相景;吕福堂;. 化感作用及其在农业生产中的应用[J]. , 2006, 0(S1): 116-119. |
[9] | . 环境保护上的应用[J]. , 1987, 0(06): 116-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||