生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 36-48.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1331
收稿日期:
2020-10-29
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
吕燕,女,硕士研究生,研究方向:微生物生态学;E-mail: 基金资助:
LV Yan(), LIU Jian-li(), LI Jing-yu, HOU Lin-lin, SUN Min, GOU Qi
Received:
2020-10-29
Published:
2021-06-26
Online:
2021-07-08
摘要:
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对植物营养吸收和生态系统功能具有重要作用。宁夏枸杞作为西北地区重要的经济、生态乡土植物,其根系AMF占据独特的生态位而具有特殊的功能。基于扩增子高通量测序技术,揭示不同品种和不同产区宁夏枸杞根系AMF多样性,为宁夏枸杞AMF菌剂开发奠定基础。收集“宁杞7号”、“宁杞9号”、“蒙杞1号”、“蒙杞2号”4个宁夏枸杞品种,宁夏中宁、甘肃靖远、宁夏海原、内蒙古乌拉特4个产区宁夏枸杞主栽品种“宁杞7号”根系和鲜果样品,采用AMF特异性引物进行PCR扩增,然后Illumina Miseq测序,比较分析AMF多样性;同时测定鲜果中多糖、总黄酮、甜菜碱等有效成分含量,相关性分析与有效成分含量有关的AMF。所有样品中共出现3个目3个科3个属49个AMF OTUs,球囊霉属是所有样品的优势属;Glomus.sp.VTX00113是所有样品共有种,也是“宁杞7号”、“蒙杞1号”和“蒙杞2号”品种以及“海原”产区和“甘肃”产区的优势种,但“宁杞9号”优势种为Glomus.sp.VTX00156,“内蒙古”产区和“中宁”产区的优势种分别为未鉴定出的球囊霉菌unclassified_OTU32和unclassified_OTU39。不同品种之间α-多样性指数有显著差异,“宁杞7号”最高,“蒙杞2号”最低;产区之间α-多样性指数无显著差异。在种水平,Glomus.sp.VTX00113在4个产区中所占比例存在显著性差异(P<0.001),但4个品种间无显著性差异种。品种间AMF群落β-多样性无显著差异(P=0.123),产区间β-多样性差异显著(P=0.001);果实多糖含量与AMF无相关性,Glomus.sp.VTX00113与甜菜碱含量显著正相关,unclassified_OTU14仅在不同品种样品中与甜菜碱含量显著负相关,Glomus.sp.VTX00393仅在不同品种样品中与总黄酮含量显著正相关,Glomus.sp.VTX00247仅在不同产区样品中与总黄酮含量显著正相关。品种影响宁夏枸杞根系AMF群落α-多样性、优势种,但不影响β-多样性,产区影响β-多样性、优势种,不影响α-多样性指数;AMF与枸杞果实甜菜碱、总黄酮含量相关,与多糖含量无相关性。
吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48.
LV Yan, LIU Jian-li, LI Jing-yu, HOU Lin-lin, SUN Min, GOU Qi. Diversity of Arbuscular Mycorrhizal Fungi Inhabiting the Roots of Lycium barbarum in Different Varieties and Cultivation Regions[J]. Biotechnology Bulletin, 2021, 37(6): 36-48.
α-多样 性指数 α-diversity index | 不同品种Different varieties | |||
---|---|---|---|---|
宁杞7号 N7 | 宁杞9号 N9 | 蒙杞1号 M1 | 蒙杞2号 M2 | |
Shannon | 1.02±0.42a | 0.73±0.63ab | 0.51±0.58ab | 0.04±0.01b |
Simpson | 0.43±0.09b | 0.58±0.36ab | 0.74±0.28ab | 1.00±0a |
ACE | 11.1±4.4a | 4.55±4.03ab | 4.33±2.52b | 3.25±1.40b |
Chao1 | 10±4.58a | 5.67±0.58a | 4.33±2.52ab | 2.67±0.0.58b |
Heip | 0.26±0.08a | 0.27±0.23ab | 0.17±0.18ab | 0.002±0.001b |
Coverage | 1.00±0 | 1.00±0 | 1.00±0 | 1.00±0 |
表1 不同品种样品中AMF α-多样性指数
Table 1 α-diversity index of arbuscular mycorrhizal fungi in different varieties samples based on OTU
α-多样 性指数 α-diversity index | 不同品种Different varieties | |||
---|---|---|---|---|
宁杞7号 N7 | 宁杞9号 N9 | 蒙杞1号 M1 | 蒙杞2号 M2 | |
Shannon | 1.02±0.42a | 0.73±0.63ab | 0.51±0.58ab | 0.04±0.01b |
Simpson | 0.43±0.09b | 0.58±0.36ab | 0.74±0.28ab | 1.00±0a |
ACE | 11.1±4.4a | 4.55±4.03ab | 4.33±2.52b | 3.25±1.40b |
Chao1 | 10±4.58a | 5.67±0.58a | 4.33±2.52ab | 2.67±0.0.58b |
Heip | 0.26±0.08a | 0.27±0.23ab | 0.17±0.18ab | 0.002±0.001b |
Coverage | 1.00±0 | 1.00±0 | 1.00±0 | 1.00±0 |
α 多样 性指数 α-diversity index | 不同产区Different cultivation regions | ||||
---|---|---|---|---|---|
中宁 Zhongning | 海原 Haiyuan | 内蒙古 Inner Mongolia | 甘肃 Gansu | ||
Shannon | 0.75±0.40 | 0.99±0.30 | 0.48±0.43 | 1.02±0.42 | |
Simpson | 0.6±0.21 | 0.53±0.16 | 0.68±0.28 | 0.43±0.09 | |
ACE | 11.63±4.24 | 6.38±5.55 | 3.33±5.77 | 3.85±3.34 | |
Chao1 | 10.00±2.65 | 8.33±1.15 | 4.78±3.24 | 8.67±5.51 | |
Heip | 0.17±0.20 | 0.25±0.13 | 0.36±0.46 | 0.29±0.05 | |
Coverage | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
表2 不同产区样品中AMF α-多样性指数
Table 2 AMF α-diversity index in samples from different cultivation regions
α 多样 性指数 α-diversity index | 不同产区Different cultivation regions | ||||
---|---|---|---|---|---|
中宁 Zhongning | 海原 Haiyuan | 内蒙古 Inner Mongolia | 甘肃 Gansu | ||
Shannon | 0.75±0.40 | 0.99±0.30 | 0.48±0.43 | 1.02±0.42 | |
Simpson | 0.6±0.21 | 0.53±0.16 | 0.68±0.28 | 0.43±0.09 | |
ACE | 11.63±4.24 | 6.38±5.55 | 3.33±5.77 | 3.85±3.34 | |
Chao1 | 10.00±2.65 | 8.33±1.15 | 4.78±3.24 | 8.67±5.51 | |
Heip | 0.17±0.20 | 0.25±0.13 | 0.36±0.46 | 0.29±0.05 | |
Coverage | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
图1 属水平不同宁夏枸杞品种样品中AMF相对分布图 A:不同品种AMF相对丰度;B:不同品种组间差异AMF
Fig.1 Relative abundance of AMF genus among different varieties A:Relative AMF abundance in different varieties. B:Significant differences among different varieties
图2 属水平不同宁夏枸杞产区样品中AMF相对分布图 A:不同产区AMF相对丰度;B:不同产区组间差异AMF
Fig.2 Relative abundance of AMF at genus level among cultivated regions A:Relative AMF abundance in differentin cultivated regions. B:Significant differences among cultivated regions
种名Species | 不同品种Different varieties/% | ||||
---|---|---|---|---|---|
N7 | N9 | M1 | M2 | ||
Glomus_iranicum_VTX00155 | 0 | 0 | 4.1 | 0 | |
Rhizophagus_intraradices_VTX00100 | 18 | 0 | 1.7 | 33.3 | |
Glomus_VTX00105 | 0 | 0 | 4.9 | 0 | |
Glomus_VTX00113 | 52.3 | 11.3 | 87.3 | 33.3 | |
Glomus_VTX00155 | 0 | 0 | 1.5 | 0 | |
Glomus_VTX00156 | 18.5 | 42.9 | 0 | 0 | |
Glomus_VTX00301 | 5.3 | 0 | 0 | 0 | |
Glomus_VTX00304 | 3.6 | 12.4 | 0 | 0 | |
Glomus_VTX00393 | 0 | 0 | 0 | 33.3 | |
unclassified_OTU14 | 0 | 19.1 | 0 | 0 | |
unclassified_OTU15 | 0 | 8.6 | 0 | 0 | |
unclassified_OTU32 | 0 | 4.7 | 0 | 0 | |
others | 2.3 | 0.9 | 0.3 | 0 |
表3 种水平不同宁夏枸杞品种样品中AMF相对分布表
Table 3 Relative abundance of AMF among different varieties at species level
种名Species | 不同品种Different varieties/% | ||||
---|---|---|---|---|---|
N7 | N9 | M1 | M2 | ||
Glomus_iranicum_VTX00155 | 0 | 0 | 4.1 | 0 | |
Rhizophagus_intraradices_VTX00100 | 18 | 0 | 1.7 | 33.3 | |
Glomus_VTX00105 | 0 | 0 | 4.9 | 0 | |
Glomus_VTX00113 | 52.3 | 11.3 | 87.3 | 33.3 | |
Glomus_VTX00155 | 0 | 0 | 1.5 | 0 | |
Glomus_VTX00156 | 18.5 | 42.9 | 0 | 0 | |
Glomus_VTX00301 | 5.3 | 0 | 0 | 0 | |
Glomus_VTX00304 | 3.6 | 12.4 | 0 | 0 | |
Glomus_VTX00393 | 0 | 0 | 0 | 33.3 | |
unclassified_OTU14 | 0 | 19.1 | 0 | 0 | |
unclassified_OTU15 | 0 | 8.6 | 0 | 0 | |
unclassified_OTU32 | 0 | 4.7 | 0 | 0 | |
others | 2.3 | 0.9 | 0.3 | 0 |
种名Species | 不同产区Different cultivation regions/% | ||||
---|---|---|---|---|---|
海原 Haiyuan | 中宁 Zhongning | 内蒙古 Inner Mongolia | 甘肃 Gansu | ||
Claroideoglomus_ VTX00193 | 2.5 | 0.0 | 0.0 | 0.0 | |
Glomus_VTX00085 | 6.4 | 0.0 | 0.0 | 0.0 | |
Glomus_VTX00155 | 0.0 | 25.4 | 0.0 | 0.0 | |
Glomus_VTX00214 | 1.3 | 0.0 | 10.8 | 0.0 | |
Glomus_VTX00222 | 0.0 | 7.9 | 0.0 | 0.8 | |
Glomus_VTX00301 | 1.9 | 0.0 | 22.5 | 5.4 | |
Rhizophagus_intraradices_ VTX00100 | 0.0 | 0.0 | 0.0 | 18.0 | |
unclassified_OTU32 | 0.0 | 0.0 | 33.3 | 0.0 | |
unclassified_OTU39 | 0.0 | 32.9 | 0.0 | 0.0 | |
Glomus_VTX00113 | 69.8 | 5.0 | 0.7 | 52.2 | |
Glomus_VTX00156 | 12.8 | 22.2 | 0.0 | 18.5 | |
Glomus_VTX00165 | 0.0 | 0.0 | 17.2 | 0.0 | |
Glomus_VTX00247 | 0.5 | 0.2 | 15.4 | 0.6 | |
Glomus_VTX00304 | 3.7 | 5.9 | 0.0 | 3.7 | |
others | 1.1 | 0.4 | 0.0 | 0.8 |
表4 种水平不同宁夏枸杞产区样品中AMF相对分布表
Table 4 Relative abundance of AMF among different cultivation regions at species level
种名Species | 不同产区Different cultivation regions/% | ||||
---|---|---|---|---|---|
海原 Haiyuan | 中宁 Zhongning | 内蒙古 Inner Mongolia | 甘肃 Gansu | ||
Claroideoglomus_ VTX00193 | 2.5 | 0.0 | 0.0 | 0.0 | |
Glomus_VTX00085 | 6.4 | 0.0 | 0.0 | 0.0 | |
Glomus_VTX00155 | 0.0 | 25.4 | 0.0 | 0.0 | |
Glomus_VTX00214 | 1.3 | 0.0 | 10.8 | 0.0 | |
Glomus_VTX00222 | 0.0 | 7.9 | 0.0 | 0.8 | |
Glomus_VTX00301 | 1.9 | 0.0 | 22.5 | 5.4 | |
Rhizophagus_intraradices_ VTX00100 | 0.0 | 0.0 | 0.0 | 18.0 | |
unclassified_OTU32 | 0.0 | 0.0 | 33.3 | 0.0 | |
unclassified_OTU39 | 0.0 | 32.9 | 0.0 | 0.0 | |
Glomus_VTX00113 | 69.8 | 5.0 | 0.7 | 52.2 | |
Glomus_VTX00156 | 12.8 | 22.2 | 0.0 | 18.5 | |
Glomus_VTX00165 | 0.0 | 0.0 | 17.2 | 0.0 | |
Glomus_VTX00247 | 0.5 | 0.2 | 15.4 | 0.6 | |
Glomus_VTX00304 | 3.7 | 5.9 | 0.0 | 3.7 | |
others | 1.1 | 0.4 | 0.0 | 0.8 |
图3 种水平不同宁夏枸杞品种和产区样品中AMF组间显著差异图 A:不同品种组间差异AMF;B:不同产区组间差异AMF
Fig.3 Significant differences of AMF among different varieties and cultivated regions at species level A:Significant differences among different varieties. B:Significant differences among different cultivated regions
图5 宁夏枸杞根系AMF OTU和样品共现性网络图 A:不同品种;B:不同产区
Fig.5 Co-occurrence patterns of AMF in L. barbarum roots at OTU level A:Different varieties. B:Different cultivaion regions
图6 基于Bray_Curtis距离AMF群落的NMDS排序图 A:不同品种;B:不同产区
Fig.6 NMDS ordination based on Bray_Curtis similarities of AMF community A:Different varieties. B:Different cultivation regions
图7 基于种水平宁夏枸杞根系AMF与枸杞有效成分相关性heatmap图 A:不同品种;B:不同产区
Fig.7 Correlation heatmap of AMF and main active ingredients in L. barbarum roots at species level A:Different varieties. B:Different cultivation regions
[1] | 董静洲, 杨俊军, 王瑛. 我国枸杞属物种资源及国内外研究进展[J]. 中国中药杂志, 2008(18):2020-2027. |
Dong JZ, Yang JJ, Wang Y. Resources of Lycium species and related research progress[J]. China Journal of Chinese Material Medica, 2008(18):2020-2027. | |
[2] | 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285-5297. |
Chen WL, Li J, Zhu HH, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17):5285-5297. | |
[3] |
Kaur S, Suseela V. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome[J]. Metabolites, 2020, 10(8):335.
doi: 10.3390/metabo10080335 URL |
[4] | 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48(9):845-852. |
Sun JQ, Liu RJ, Li M. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi[J]. Plant Physiology Journal, 2012, 48(9):845-852. | |
[5] | 黄京华, 孙晨瑜. 浅析丛枝菌根共生的生态学意义[J]. 中南民族大学学报:自然科学版, 2018, 37(4):45-50. |
Huang JH, Sun CY. Ecological significance of arbuscular mycorrhizal symbiosis[J]. Journal of South-Central University for Nationalities:Natural Science Edition, 2018, 37(4):45-50. | |
[6] | 刘洪光. AM真菌提高枸杞耐盐性的机制研究[D]. 杨凌:西北农林科技大学, 2016. |
Liu HG. Mechanisms of arbuscular mycorrhizal fungi(AMF)enhancing salt tolerance of Lycium barbarum L.[D]. Yangling:Northwest A&F University, 2016. | |
[7] | 韦素贞. 丛枝菌根真菌(AMF)和施钾对宁夏枸杞响应干旱胁迫的交互影响[D]. 杨凌:西北农林科技大学, 2016. |
Wei SZ. The interactive effects of arbuscular mycorrhizal fungus and potassium application on Lycium barbarum L. responding to drought stress[D]. Yangling:Northwest A&F University, 2016. | |
[8] | 张海涵. 黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制[D]. 杨凌:西北农林科技大学, 2011. |
Zhang HH. Micro-ecosystem associated with the rhizosphere of Lycium barbarum from the loess plateau and the mechanisms of symbiotic fungal inoculation on the host plant growth and drought resistance[D]. Yangling:Northwest A&F University, 2011. | |
[9] | 杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11):3971-3979. |
Yang WY, Sun LY, Song FB, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agroecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11):3971-3979. | |
[10] | 肖龙敏, 唐明, 张好强. 不同种植年限宁夏枸杞根际微生物的群落多样性[J]. 西北林学院学报, 2018, 33(6):31-39. |
Xiao LM, Tang M, Zhang HQ, et al. Diversity of microbial community in rhizosphere soil of Lycium barbarum relative to cultivation history[J]. Journal of Northwest Forestry University, 33(6):31-39. | |
[11] | 唐明, 杨慧平, 王亚军, 等. 宁夏旱生植物VA菌根真菌的研究[J]. 西北林学院学报, 2005(2):78-82. |
Tang M, Yang HP, Wang YJ, et al. Arbuscular Mycorrhizal Fungi(AMF)of xerophilous trees in Ningxia[J]. Journal of Northwest Forestry University, 2005(2):78-82. | |
[12] | 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. |
Liu RJ, Chen YL. Mycorrhizology[M]. Beijing: Science Press, 2007. | |
[13] | 田永伟. 内蒙古中部地区马铃薯根系及根际土中AMF群落的多样性研究[D]. 呼和浩特:内蒙古农业大学, 2017. |
Tian YW. The study on the AMF populations in roots and rhizosphere of potato samples collected from the middle region of Inner Mongolia[D]. Hohhot:Inner Mongolia Agricultural University, 2017. | |
[14] | Hu YJ, Gao MC, Liu XZ, et al. Diversity of arbuscular mycorrhizal fungi and dark septate endophytes in the greenhouse cucumber roots and soil[J]. Mycosystema, 2017, 36(2):164-176. |
[15] |
Van Geel M, Busschaert P, Honnay O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal(AMF)communities using 454 pyrosequencing[J]. Journal of Microbiological Methods, 2014, 106:93-100.
doi: 10.1016/j.mimet.2014.08.006 URL |
[16] |
Öpik M, Vanatoa A, Vanatoa E, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi(Glomeromycota)[J]. The New Phytologist, 2010, 188(1):223-241.
doi: 10.1111/j.1469-8137.2010.03334.x URL |
[17] | 周光荣, 尚昆, 江龙. 野生油茶根围土壤的AM真菌多样性调查[J]. 贵州大学学报:自然科学版, 2019, 36(6):26-31. |
Zhou GR, Shang K, Jiang L. Diversity survey of AM fungi in rhizosphere soil of ild Camellia oleifera[J]. Journal of Guizhou University:Natural Sciences, 2019, 36(6):26-31. | |
[18] | 吴燕, 王晓菁, 刘元柏. 比色法测定枸杞子中甜菜碱含量的研究[J]. 安徽农学通报, 2011, 17(11):34-35, 50. |
Wu Y, Wang XJ, Liu YB. Study on betaine content of fructus lycjj with colormetry[J]. Anhui Agricultural Science Bulletin, 2011, 17(11):34-35, 50. | |
[19] | 闫秀梅, 董静洲, 王瑛. 枸杞和宁夏枸杞叶片主要活性成分含量比较研究[J]. 食品科学, 2010, 31(1):29-32. |
Yan XM, Dong JZ, Wang Y. Comparison studies of main active compounds in young leaves of L. barbarum and L. chinense[J]. Food Science, 2010, 31(1):29-32.
doi: 10.1111/jfds.1966.31.issue-1 URL |
|
[20] | 程春泉, 贺学礼, 赵丽丽, 等. 分子生物学技术在AM真菌多样性研究中的应用[J]. 贵州农业科学, 2014, 42(8):129-134. |
Cheng CQ, He XL, Zhao LL, et al. Application of molecular biological methods in the study of AM fungal diversity[J]. Guizhou Agricultural Science, 2014, 42(8):129-134. | |
[21] | 盛敏. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究[D]. 杨凌:西北农林科技大学, 2008. |
Sheng M. Study on VA mycorrhizal fungi influence on salt-resistant mechanisms of maize plants and microbiological diversity in farmland soils[D]. Yangling:Northwest A&F University, 2008. | |
[22] | 肖龙敏. 宁夏枸杞根际微生物群落多样性及丛枝菌根真菌对其耐盐性的影响[D]. 杨凌:西北农林科技大学, 2018. |
Xiao LM. Diversity of microbial community in rhizosphere soils of Lycium barbarum L. and influence of arbuscular mycorrhizal fungi salt tolerance[D]. Yangling:Northwest A&F University, 2018. | |
[23] | 纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53(1):241-252. |
Na XF, Zheng GQ, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium barbarum L. relative to cultivation history[J]. Acta Pedologica Sinica, 2016, 53(1):241-252. | |
[24] | 秦垦, 戴国礼. 枸杞品种选育进展与展望[J]. 宁夏农林科技, 2017, 58(12):25-28, 33. |
Qin K, Dai GL. Progress and prospect of wolfberry strains breeding[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2017, 58(12):25-28, 33. | |
[25] |
Holland TC, Bowen P, Bogdanoff C, et al. How distinct are arbuscular mycorrhizal fungal communities associating with grapevines?[J]. Biology and Fertility of Soils, 2014, 50(4):667-674.
doi: 10.1007/s00374-013-0887-2 URL |
[26] |
盖京苹, 冯固, 李晓林. 我国北方农田土壤中AM真菌的多样性[J]. 生物多样性, 2004, 12(4):435-440.
doi: 10.17520/biods.2004053 |
Gai JP, Feng G, Li XL. Diversity of arbuscular mycorrhizal fungi in field soils from North China[J]. Biodiversity Science, 2004, 12(4):435-440. | |
[27] |
Sheng M, Zhang X, Chen X, et al. Biogeography of arbuscular mycorrhizal fungal communities in saline ecosystems of northern China[J]. Applied Soil Ecology, 2019, 143:213-221.
doi: 10.1016/j.apsoil.2019.07.021 |
[28] | 杨海水, 熊艳琴, 王琪, 等. AM真菌物种多样性:生态功能、影响因素及维持机制[J]. 生态学报, 2016, 36(10):2826-2832. |
Yang HS, Xiong YQ, Wang Q, et al. Arbuscular mycorrhizal fungal species diversity:ecological functioning, determinants and assembling mechanisms[J]. Acta Ecologica Sinica, 2016, 36(10):2826-2832. | |
[29] | 王宇涛, 辛国荣, 李韶山. 丛枝菌根真菌最新分类系统与物种多样性研究概况[J]. 生态学报, 2013, 33(3):834-843. |
Wang YT, Xin GR, Li SS. An overview of the updated classification system and species diversity of arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(3):0834-0843.
doi: 10.5846/stxb URL |
|
[30] | 李越鲲, 孙燕飞, 雷勇辉, 等. 枸杞根际土壤真菌群落多样性的高通量测序[J]. 微生物学报, 2017, 57(7):1049-1059. |
Li YK, Sun YF, Lei YH, et al. Fungal community diversity in rhizosphere soil of Lycium barbarum L. based on high-throughput sequencing[J]. Acta Microbiologica Sinica, 2017, 57(7):1049-1059. | |
[31] | Al-Garni. Increasing NaCl-Salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis[J]. American-Eurasian Journal of Agriculture and Environmental Sciences, 2006, 1(2):119-126. |
[32] |
Amiri R, Nikbakht A, Rahimmalek M, et al. Variation in the essential oil composition, antioxidant capacity, and Physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions[J]. Journal of Plant Growth Regulation, 2017, 36(2):502-515.
doi: 10.1007/s00344-016-9659-1 URL |
[33] | 贺学礼, 高露, 赵丽莉. 水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响[J]. 生态学报, 2011, 31(4):1029-1037. |
He XL, Gao L, Zhao LL. Effects of AM fungi on the growth and drought resistance of Seriphidium minchiinense under water stress[J]. Acta Ecologica Sinica, 2011, 31(4):1029-1037. | |
[34] | 吕桂云. 丛枝菌根化育苗对大棚黄瓜生长发育和果实品质的影响[D]. 保定:河北农业大学, 2001. |
Lv GY. Influence of AMF on the growth and fruit quality of plastics greenhouse cucumber(Cucumis stivus L.)[D]. Baoding:Hebei Agricultural University, 2001. | |
[35] | 贺超兴, 王锐竹, 张志斌. 接种AM真菌对温室甜瓜产量及品质的影响[J]. 北方园艺, 2010(15):168-170. |
He CX, Wang RZ, Zhang ZB. Effects of arbuscular mycorrhizal fungi inoculation on the yield and quality of melon[J]. Northern Horticulture, 2010(15):168-170. | |
[36] | 王锐竹, 张艳玲, 于艳洁, 等. AM真菌对番茄产量品质及根区环境的影响[J]. 天津农林科技, 2016(2):22-23. |
Wang RZ, Zhang YL, Yu YJ, et al. Effect of AM fungi on yield and quality of potato and root environment[J]. Science and Technology of Tianjin Agriculture and Forestry, 2016(2):22-23. | |
[37] | 曹冠华, 张雪, 顾雯, 等. 不同产地滇黄精丛枝菌根真菌、深色有隔内生真菌定殖调查及与主要功效成分含量相关性分析[J]. 中草药, 2019, 50(16):3930-3936. |
Cao GH, Zhang X, Gu W, et al. Colonization investigation of arbuscular mycorrhizal fungi(AMF)and dark septate endophytes(DSE)in roots of Polygonatum kingianum and their correlations with content of main functional components in rhizomes[J]. Chinese Traditional and Herbal Drugs, 2019, 50(16):3930-3936. | |
[38] |
Mirjani L, Salimi A, Matinizadeh M, et al. The role of arbuscular mycorrhizal fungi on acclimatization of micropropagated plantlet Satureja khuzistanica Jam. by ameliorating of antioxidant activity and expression of PAL gene[J]. Scientia Horticulturae, 2019, 253:364-370.
doi: 10.1016/j.scienta.2019.04.060 |
[39] | 刘灵. 丛枝菌根真菌对丹参酚酸生物合成的影响[D]. 哈尔滨:东北林业大学, 2015. |
Liu L. Arbuscular mycorrhizal fungi affect the biosynthesis of phenolic acidin Salvia miltiorrhiza[D]. Harbin:Northeast Forestry University, 2015. | |
[40] | 王林闯, 贺超兴, 张志斌. AM真菌对不同栽培基质甜椒生长及产量品质的影响[J]. 中国蔬菜, 2010(16):32-37. |
Wang LC, He CX, Zhang ZB. Effect of AM fungi on growth, yield and quality of sweet pepper under soil cultivation and rich organic matter soil in greenhouse[J]. China Vegetables, 2010(16):32-37. | |
[41] | 张华, 孙纪全, 包玉英. 丛枝菌根真菌影响植物次生代谢产物的研究进展[J]. 农业生物技术学报, 2015, 23(8):1093-1103. |
Zhang H, Sun JQ, Bao YY. Advances in studies on plant secondary metabolites influenced by arbuscular mycorrhizal fungi[J]. Journal of Agricultural Biotechnology, 2015, 23(8):1093-1103. | |
[42] | 肖质净. 丛枝菌根真菌(AMF)对植物生化变化影响研究进展[J]. 农业科技与装备, 2017(5):11-12. |
Xiao ZJ. Research progress on effects of arbuscular mycorrhizal fungi(AMF)on plant biochemical changes[J]. Agricultural Science & Technology and Equipment, 2017(5):11-12. | |
[43] |
Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:a review[J]. Annals of Botany, 2009, 104(7):1263-1280.
doi: 10.1093/aob/mcp251 URL |
[1] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[2] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[3] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[4] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[5] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[6] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[7] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[8] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[9] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[10] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[11] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[12] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[13] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[14] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[15] | 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||