生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 221-231.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0583
孙海航(), 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲()
收稿日期:
2022-05-10
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
孙海航,男,硕士研究生,研究方向:土壤微生物学;E-mail: 基金资助:
SUN Hai-hang(), GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling()
Received:
2022-05-10
Published:
2023-02-26
Online:
2023-03-07
摘要:
研究生物炭对三七根际土壤理化性质及真菌群落结构的影响,有助于深入了解三七连作土壤状况,为土壤改良及三七生态种植提供科学依据和理论指导。该研究选取烟杆炭TB,稻壳炭RB为试验材料,以不添加生物炭处理为对照CK,采用田间试验,通过高通量测序技术进行分析,研究两种生物炭对两年生三七根际土壤理化性质及真菌群落结构的影响。施加生物炭能提高三七的存活率,pH值、土壤有效磷、微生物量碳及有效钾对三七成活率具有促进作用,铵态氮对三七成活率具有抑制作用,土壤pH值对酸性磷酸酶和脲酶活性具有正贡献,而对蔗糖酶具有抑制作用。通过对真菌群落结构多样性分析,施加两种生物炭均显著改善了三七连作地的真菌群落结构,提高三七根际土壤真菌的多样性及丰富度指数。不同处理下土壤真菌群落结构存在明显分化,施加生物炭后均显著提升Ascomycota(子囊菌门)的相对丰度,显著降低Basidiomycota(担子菌门)及Mortierellomycota(被孢菌门)的相对丰度,在属水平上,与CK相比,施加生物炭后Fusarium(镰刀菌属)、Aspergillus(曲霉菌属)和Alternaria(链格孢属)的相对丰度显著降低(P<0.05),Botryotinia的丰度显著升高(P<0.01)。冗余分析表明,pH值、硝态氮、有效磷及有效钾是造成三七真菌群落结构与多样性差异的主要环境因子。生物炭通过提高土壤pH值、有效磷、微生物量碳等含量及真菌群落多样性,降低病原菌丰度,从而提高三七成活率。
孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231.
SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng[J]. Biotechnology Bulletin, 2023, 39(2): 221-231.
处理Treatment | pH | 电导率 EC/(ms·cm-1) | 铵态氮 NH4+-N/(mg·kg-1) | 硝态氮 NO3-N/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 有效钾 AK/(mg·kg-1) | 总氮 TN/% | 总碳 TP/% |
---|---|---|---|---|---|---|---|---|
稻壳炭RB | 9.76±0.34a | 4.20±0.32a | 1.95±0.11b | 35.71±6.12a | 854.59±23.11a | 1.10±0.86b | 0.12±0.05b | 1.99±1.02b |
烟杆炭TB | 10.30±0.24a | 0.34±0.11b | 3.34±0.18a | 7.98±2.54b | 743.60±32.14b | 8.49±1.22a | 0.88±0.13a | 62.3±5.21a |
表1 生物炭基本性质
Table 1 Basic properties of the biochar
处理Treatment | pH | 电导率 EC/(ms·cm-1) | 铵态氮 NH4+-N/(mg·kg-1) | 硝态氮 NO3-N/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 有效钾 AK/(mg·kg-1) | 总氮 TN/% | 总碳 TP/% |
---|---|---|---|---|---|---|---|---|
稻壳炭RB | 9.76±0.34a | 4.20±0.32a | 1.95±0.11b | 35.71±6.12a | 854.59±23.11a | 1.10±0.86b | 0.12±0.05b | 1.99±1.02b |
烟杆炭TB | 10.30±0.24a | 0.34±0.11b | 3.34±0.18a | 7.98±2.54b | 743.60±32.14b | 8.49±1.22a | 0.88±0.13a | 62.3±5.21a |
处理Treatment | 对照CK | 稻壳炭RB | 烟杆炭TB |
---|---|---|---|
成活率Survical rate/% | 5.93±2.38b | 17.17±1.15a | 18.17±2.52a |
pH | 5.98±0.13b | 6.38±0.23a | 6.34±0.18a |
铵态氮NH4+-N/(mg·kg-1) | 3.19±0.11a | 2.30±0.55b | 2.77±0.12b |
硝态氮NO3--N/(mg·kg-1) | 7.63±0.44b | 7.7±0.19b | 29.29±3.34a |
有效磷AP/(mg·kg-1) | 7.492±1.10b | 15.978±3.10a | 16.686±2.66a |
有效钾AK/(mg·kg-1) | 138.421±21.05a | 137.564±18.04a | 124.367±8.32a |
微生物量碳MC/(mg·kg-1) | 42.46±6.16a | 56.22±7.19a | 61.17±23.33a |
酸性磷酸酶Phosphatase/[mg·(g·24 h)-1] | 0.190±0.04b | 0.150±0.08b | 0.550±0.15a |
脲酶 Urease/[mg·(g·24 h)-1] | 0.459±0.07b | 0.467±0.09b | 0.594±0.18a |
蔗糖酶Sucrase/[mg·(g·24 h)-1] | 45.910±6.45a | 23.475±6.55b | 18.217±7.36b |
表2 三七连作土壤的理化性质和土壤酶活性
Table 2 Physicochemical properties and enzyme activities of soil for continuously cropping P. notoginseng
处理Treatment | 对照CK | 稻壳炭RB | 烟杆炭TB |
---|---|---|---|
成活率Survical rate/% | 5.93±2.38b | 17.17±1.15a | 18.17±2.52a |
pH | 5.98±0.13b | 6.38±0.23a | 6.34±0.18a |
铵态氮NH4+-N/(mg·kg-1) | 3.19±0.11a | 2.30±0.55b | 2.77±0.12b |
硝态氮NO3--N/(mg·kg-1) | 7.63±0.44b | 7.7±0.19b | 29.29±3.34a |
有效磷AP/(mg·kg-1) | 7.492±1.10b | 15.978±3.10a | 16.686±2.66a |
有效钾AK/(mg·kg-1) | 138.421±21.05a | 137.564±18.04a | 124.367±8.32a |
微生物量碳MC/(mg·kg-1) | 42.46±6.16a | 56.22±7.19a | 61.17±23.33a |
酸性磷酸酶Phosphatase/[mg·(g·24 h)-1] | 0.190±0.04b | 0.150±0.08b | 0.550±0.15a |
脲酶 Urease/[mg·(g·24 h)-1] | 0.459±0.07b | 0.467±0.09b | 0.594±0.18a |
蔗糖酶Sucrase/[mg·(g·24 h)-1] | 45.910±6.45a | 23.475±6.55b | 18.217±7.36b |
图1 三七成活率与土壤理化性质及酶活性相关性描述分析 NH4+-N:铵态氮;NO3--N:硝态氮;AP:有效磷;AK:有效钾;MC:微生物量碳;Sucrase:蔗糖酶;Phosphatase:磷酸酶;Urease:脲酶。*表示P<0.05,**表示P<0.01。下同
Fig. 1 Descriptive analysis on the correlation between P. notoginseng's survival rates and soil physicochemical properties and enzyme activities NH4+-N: Ammonium nitrogen. NO3--N: Nitrate nitrogen. AP: Available phosphorus. AK: Available potassium. MC: Microbial biomass carbon.). * indicates P<0.05,and **indicates P<0.01. The same below
图2 属水平不同处理间真菌类群的相对丰度及其与三七成活率的皮尔逊相关系数 R值代表真菌的相对丰度与三七成活率的相关系数
Fig. 2 Abundance of fungal population among different treatments at the genus level in the rhizosphere soil and their Pearson’s correlation coefficients with P. notoginseng’s survival rates R refers to the coefficient between the relative abundance and P. notoginseng’s survival rate
处理Treatment | OTUs | Chao1 | Simpson | Shannon |
---|---|---|---|---|
CK | 781.4±7.05b | 998.24±5.17b | 0.8844±0.0194b | 4.32±0.93c |
稻壳炭RB | 776.4±10.95b | 950.79±28.98c | 0.8993±0.0013b | 6.36±0.21b |
烟杆炭TB | 819.6±10.5a | 1044.45±17.69a | 0.9950±0.0036a | 8.21±0.60a |
表3 三七连作土壤真菌群落alpha多样性分析
Table 3 Alpha diversity analysis of fungal community in soil for continuous cropping of P. notoginseng
处理Treatment | OTUs | Chao1 | Simpson | Shannon |
---|---|---|---|---|
CK | 781.4±7.05b | 998.24±5.17b | 0.8844±0.0194b | 4.32±0.93c |
稻壳炭RB | 776.4±10.95b | 950.79±28.98c | 0.8993±0.0013b | 6.36±0.21b |
烟杆炭TB | 819.6±10.5a | 1044.45±17.69a | 0.9950±0.0036a | 8.21±0.60a |
图3 土壤理化性质与真菌群落相对丰度及多样性指数相关性分析热图
Fig. 3 Heatmap of correlation analysis between soil physi-cochemical properties and fungal community diver-sity index or relative abundance of soil fungal com-munity
图4 基于门(A)与属(B)水平土壤真菌群落结构与土壤理化性质间的冗余分析
Fig. 4 Redundancy analysis between the soil fungal community and soil physicochemical properties based on phylum(A)and genus(B)level
图5 土壤性质及真菌群落指标对三七苗成活率影响的结构模型 箭头附近的数字表示标准化路径系数;绿色代表正面贡献,红色代表负面贡献;粗线条代表具有显著相关性。Ascomycota:子囊菌门;Basidiomycota:担子菌门;Basidiomycota:担子菌门;***:P<0.001
Fig. 5 Structural model of the influence of soil properties and fungal community indicators on the survival rate of P. notoginseng seedlings The SEM was conducted with Amos24. The number near the arrow represents the standardized path coefficient; green represents positive contribution, and red represents negative contribution. Bold lines represent significant correlation. ***: P<0.001
[1] | 黄依丹, 成嘉欣, 石颖, 等. 近五年三七化学成分、色谱分析、三七提取物和药理活性的研究进展[J]. 中国中药杂志, 2022, 47(10): 2584-2596. |
Huang YD, Cheng JX, Shi Y, et al. Panax notoginseng: a review on chemical components, chromatographic analysis, P. notoginseng extracts, and pharmacology in recent five years[J]. China J Chin Mater Med, 2022, 47(10): 2584-2596. | |
[2] |
Fan ZY, Miao CP, Qiao XG, et al. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng[J]. J Ginseng Res, 2016, 40(2): 97-104.
doi: 10.1016/j.jgr.2015.05.003 URL |
[3] | 邢娜, 彭东辉, 张志宏, 等. 炮制对三七化学成分及药理作用影响的研究进展[J]. 中国实验方剂学杂志, 2020, 26(16): 210-217. |
Xing N, Peng DH, Zhang ZH, et al. Progress in research on effect of processing on chemical constituents and pharmacological effect of notoginseng Radix et rhizoma[J]. Chin J Exp Tradit Med Formulae, 2020, 26(16): 210-217. | |
[4] | 崔秀明, 黄璐琦, 郭兰萍, 等. 中国三七产业现状及发展对策[J]. 中国中药杂志, 2014, 39(4): 553-557. |
Cui XM, Huang LQ, Guo LP, et al. Chinese Sanqi industry status and development countermeasures[J]. China J Chin Mater Med, 2014, 39(4): 553-557. | |
[5] | 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893. |
Sun XT, Li L, Long GQ, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chin J Ecol, 2015, 34(3): 885-893. | |
[6] | 毛忠顺, 龙月娟, 朱书生, 等. 三七根腐病研究进展[J]. 中药材, 2013, 36(12): 2051-2054. |
Mao ZS, Long YJ, Zhu SS, et al. The progress and prospect on root rot of Panax notoginseng[J]. J Chin Med Mater, 2013, 36(12): 2051-2054. | |
[7] |
Itoo ZA, Reshi ZA. The multifunctional role of ectomycorrhizal associations in forest ecosystem processes[J]. Bot Rev, 2013, 79(3): 371-400.
doi: 10.1007/s12229-013-9126-7 URL |
[8] | Shi LL, Dossa GGO, Paudel E, et al. Changes in fungal communities across a forest disturbance gradient[J]. Appl Environ Microbiol, 2019, 85(12): e00080-e00019. |
[9] | 韩世忠, 高人, 马红亮, 等. 建瓯万木林自然保护区两种森林类型土壤真菌多样性[J]. 生态学杂志, 2015, 34(9): 2613-2620. |
Han SZ, Gao R, Ma HL, et al. Soil fungal diversities of two types of forests in Jian'ou Wanmulin Nature Reserve[J]. Chin J Ecol, 2015, 34(9): 2613-2620. | |
[10] | 梁雪, 李永春, 陈相君, 等. 新疆木垒胡杨林区三种林分土壤真菌群落特征[J]. 生态学杂志, 2017, 36(3): 623-630. |
Liang X, Li YC, Chen XJ, et al. Soil fungal community characteristics in three types of forest stand in Huyang forest region of Mulei, Xinjiang[J]. Chin J Ecol, 2017, 36(3): 623-630. | |
[11] | Sugiyama A, Ueda Y, Zushi T, et al. Changes in the bacterial community of soybean rhizospheres during growth in the field[J]. PLoS One, 2014, 9(6): e100709. |
[12] |
Luo XS, Fu XQ, Yang Y, et al. Microbial communities play important roles in modulating paddy soil fertility[J]. Sci Rep, 2016, 6: 20326.
doi: 10.1038/srep20326 pmid: 26841839 |
[13] |
Wu ZX, Hao ZP, Sun YQ, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng[J]. Appl Soil Ecol, 2016, 107: 99-107.
doi: 10.1016/j.apsoil.2016.05.017 URL |
[14] |
Ma L, Cao YH, Cheng MH, et al. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex[J]. Antonie Van Leeuwenhoek, 2013, 103(2): 299-312.
doi: 10.1007/s10482-012-9810-3 URL |
[15] |
Jiang JL, Yu M, Hou RP, et al. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases[J]. Plant Soil, 2019, 438(1/2): 143-156.
doi: 10.1007/s11104-018-03928-4 URL |
[16] |
Li J, Wang RF, Zhou Y, et al. Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities[J]. J Ginseng Res, 2019, 43(3): 377-384.
doi: 10.1016/j.jgr.2017.11.008 URL |
[17] |
Li CJ, Li DF, Zhou GS, et al. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco[J]. Acta Agron Sin, 2019, 45(2): 289.
doi: 10.3724/SP.J.1006.2019.01105 URL |
[18] |
Dangi S, Gao SD, Duan YH, et al. Soil microbial community structure affected by biochar and fertilizer sources[J]. Appl Soil Ecol, 2020, 150: 103452.
doi: 10.1016/j.apsoil.2019.103452 URL |
[19] |
Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota-A review[J]. Soil Biol Biochem, 2011, 43(9): 1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 URL |
[20] |
Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, et al. A review of biochars'potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environ Pollut, 2011, 159(12): 3269-3282.
doi: 10.1016/j.envpol.2011.07.023 pmid: 21855187 |
[21] |
Lian F, Liu XW, Gao ML, et al. Effects of Fe-Mn-Ce oxide-modified biochar on As accumulation, morphology, and quality of rice(Oryza sativa L.)[J]. Environ Sci Pollut Res Int, 2020, 27(15): 18196-18207.
doi: 10.1007/s11356-020-08355-6 URL |
[22] |
Palansooriya KN, Wong JTF, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1(1): 3-22.
doi: 10.1007/s42773-019-00009-2 URL |
[23] | 牟苗. 生物质土壤改良材料制备及其在三七栽培上的应用[D]. 昆明: 云南师范大学, 2018. |
Mou M. Production and application of improved biomass material in Panax notoginseng cultivation[D]. Kunming: Yunnan Normal University, 2018. | |
[24] | 王昆艳, 王豪吉, 李双丽, 等. 施加生物炭对三七连作土壤铅有效态含量的影响[J]. 云南师范大学学报: 自然科学版, 2019, 39(5): 53-57. |
Wang KY, Wang HJ, Li SL, et al. Effect of biochar application on the content of available lead in Sanqi continuous cropping land[J]. J Yunnan Norm Univ Nat Sci Ed, 2019, 39(5): 53-57. | |
[25] |
Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed[J]. Appl Environ Microbiol, 2001, 67(10): 4742-4751.
doi: 10.1128/AEM.67.10.4742-4751.2001 URL |
[26] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[27] |
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem, 1987, 19(6): 703-707.
doi: 10.1016/0038-0717(87)90052-6 URL |
[28] | 石春芳, 王志勇, 冷小云, 等. 土壤磷酸酶活性测定方法的改进[J]. 实验技术与管理, 2016, 33(7): 48-49, 54. |
Shi CF, Wang ZY, Leng XY, et al. Improvement of soil phosphatase activity measurement method[J]. Exp Technol Manag, 2016, 33(7): 48-49, 54. | |
[29] | 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006. |
Yao HY, Huang CY. Soil microbial ecology and its experimental techniques[M]. Beijing: Science Press, 2006. | |
[30] | 赵林艳, 官会林, 向萍, 等. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
Zhao LY, Guan HL, Xiang P, et al. Composition features of microbial community in the rhizospheric soil of Bletilla striata with root rot[J]. Biotechnol Bull, 2022, 38(2): 67-74. | |
[31] |
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
doi: 10.1093/bioinformatics/btr507 pmid: 21903629 |
[32] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[33] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
doi: 10.1093/bioinformatics/btr381 pmid: 21700674 |
[34] |
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[35] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23): 7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[36] | 史思伟, 娄翼来, 杜章留, 等. 生物炭的10年土壤培肥效应[J]. 中国土壤与肥料, 2018(6): 16-22. |
Shi SW, Lou YL, Du ZL, et al. A 10-year field experiment on biochar amendment: effects on soil fertility[J]. Soil Fertil Sci China, 2018(6): 16-22. | |
[37] | 赵牧秋, 金凡莉, 孙照炜, 等. 制炭条件对生物炭碱性基团含量及酸性土壤改良效果的影响[J]. 水土保持学报, 2014, 28(4): 299-303, 309. |
Zhao MQ, Jin FL, Sun ZW, et al. Effects of pyrolysis condition on basic group of biochar and amelioration of acid soil[J]. J Soil Water Conserv, 2014, 28(4): 299-303, 309. | |
[38] |
Xu WM, Wu FY, Wang HJ, et al. Key soil parameters affecting the survival of Panax notoginseng under continuous cropping[J]. Sci Rep, 2021, 11(1): 5656.
doi: 10.1038/s41598-021-85171-z URL |
[39] | 张家春, 孙超, 李朝桢, 等. 不同种植年限白及土壤有机质、酶活性与白及有效成分研究[J]. 中药材, 2020, 43(1): 1-4. |
Zhang JC, Sun C, Li CZ, et al. Study on soil organic matter, enzyme activity and the effective components of Bletilla striata under different planting years[J]. J Chin Med Mater, 2020, 43(1): 1-4. | |
[40] |
Dong LL, Xu J, Feng GQ, et al. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J]. Sci Rep, 2016, 6: 31802.
doi: 10.1038/srep31802 URL |
[41] |
文东新, 杨宁, 杨满元. 衡阳紫色土丘陵坡地植被恢复对土壤微生物功能多样性的影响[J]. 应用生态学报, 2016, 27(8): 2645-2654.
doi: 10.13287/j.1001-9332.201608.009 |
Wen DX, Yang N, Yang MY. Effects of re-vegetation on soil microbial functional diversity in purple soils at different revegetation stages on sloping-land in Hengyang, Hunan Province, China[J]. Chin J Appl Ecol, 2016, 27(8): 2645-2654. | |
[42] | 李永赟, 刘羽佳, 叶田会, 等. 攀枝花不同海拔植烟土壤固氮细菌群落多样性与结构特征[J]. 应用与环境生物学报, 2022, 28(6): 1452-1459. |
Li YY, Liu YJ, Ye TH, et al. Diversity and structural characteristics of nitrogen-fixing bacterial community in tobacco-growing soils at different elevations in Panzhihua[J]. Chin J Appl Environ Biol, 2022, 28(6): 1452-1459. | |
[43] | 金鑫, 李孝敬, 黄艺伟, 等. 不同年份三七根际土壤中真菌的分离鉴定及其多样性的比较[J]. 中药材, 2020, 43(2): 314-317. |
Jin X, Li XJ, Huang YW, et al. solation and identification of fungi in rhizosphere soil of Panax notoginseng in different years and comparison of their diversity[J]. J Chin Med Mater, 2020, 43(2): 314-317. | |
[44] |
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts[J]. Mol Ecol, 1993, 2(2): 113-118.
doi: 10.1111/j.1365-294x.1993.tb00005.x pmid: 8180733 |
[45] |
代红翠, 张慧, 薛艳芳, 等. 不同耕作和秸秆还田下褐土真菌群落变化特征[J]. 中国农业科学, 2019, 52(13): 2280-2294.
doi: 10.3864/j.issn.0578-1752.2019.13.008 |
Dai HC, Zhang H, Xue YF, et al. Response of fungal community and function to different tillage and straw returning methods[J]. Sci Agric Sin, 2019, 52(13): 2280-2294.
doi: 10.3864/j.issn.0578-1752.2019.13.008 |
|
[46] | 宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206-217. |
Ning Q, Chen L, Li F, et al. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedol Sin, 2022, 59(1): 206-217. | |
[47] |
Tan Y, Cui YS, Li HY, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiol Res, 2017, 194: 10-19.
doi: 10.1016/j.micres.2016.09.009 URL |
[48] | 黄宇, 汪汉成, 陈乾丽, 等. 感染白粉病烟株叶片真菌的群落结构与多样性[J]. 贵州农业科学, 2020, 48(5): 54-58. |
Huang Y, Wang HC, Chen QL, et al. Community structure and diversity of fungi in leaves of tobacco plant infected with powdery mildew[J]. Guizhou Agric Sci, 2020, 48(5): 54-58. |
[1] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[2] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[3] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[4] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[5] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[6] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[7] | 杨延, 于龙凤, 王绍梅, 李卫娜, 葛锋. 三七细胞中共超表达FPS、SS对皂苷合成的影响[J]. 生物技术通报, 2022, 38(3): 50-58. |
[8] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[9] | 刘天海, 羊淑琴, 刘付彭, 苗人云, 余洋, 吴翔, 唐杰, 王勇, 彭卫红, 谭昊. 麦秸鸡粪发酵有机肥对六妹羊肚菌连作的影响[J]. 生物技术通报, 2022, 38(12): 263-273. |
[10] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[11] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[12] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[13] | 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. |
[14] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[15] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||