生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 245-256.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1491
叶娜1,2(), 张晓兰2, 包鹏甲2, 王兴东1,2, 阎萍2(), 潘和平1()
收稿日期:
2020-12-09
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
叶娜,女,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail: 基金资助:
YE Na1,2(), ZHANG Xiao-lan2, BAO Peng-jia2, WANG Xing-dong1,2, YAN Ping2(), PAN He-ping1()
Received:
2020-12-09
Published:
2021-10-26
Online:
2021-11-12
摘要:
毛囊是一种具有独特结构的、呈周期性生长的微型器官,其形态发生始于胚胎期,由表皮上皮、间质真皮及特殊衍生物经过一系列相互作用诱导形成。出生后个体的毛囊开始进行周期性循环,包括生长期、退行期和休止期。单细胞转录组测序(single-cell RNA sequence,scRNA-seq)是一种新的测序方法,通过制备单细胞悬液或细胞群,利用二代测序(next generation sequencing)来识别单个细胞的基因表达信息,主要用于分析细胞间遗传和基因表达水平的差异,更好地了解单个细胞在微环境中的具体作用。通过单细胞转录组测序可以揭示复杂和稀有细胞群体以及基因之间的调节关系,跟踪不同细胞谱系在发育过程中的轨迹。本文就单细胞转录组测序技术及其在毛囊发育调控研究中的应用展开叙述,以期为揭示毛囊发育的分子调控机制研究提供理论参考。
叶娜, 张晓兰, 包鹏甲, 王兴东, 阎萍, 潘和平. 单细胞测序技术及其在毛囊发育中的应用[J]. 生物技术通报, 2021, 37(10): 245-256.
YE Na, ZHANG Xiao-lan, BAO Peng-jia, WANG Xing-dong, YAN Ping, PAN He-ping. Single Cell Sequencing Technology and Its Application in Hair Follicle Development[J]. Biotechnology Bulletin, 2021, 37(10): 245-256.
图1 常用的单细胞分离技术部分引自[26] a:有限稀释法;b:显微操作法;c:荧光激活细胞分选技术;d:激光捕获显微切割技术;e:微流控技术
Fig. 1 Commonly used single cell isolation techniques Part cited from [26] a:Serial dilution. b:Micromanipulation. c:Fluorescence activated cell sorting technique. d:Laser capture microdissection. e:Microfluidic technology
方法 Method | cDNA合成 cDNA synthesis | 扩增方法 Amplification method | 捕获细胞量 Quantity of captured cells | cDNA覆盖 cDNA cover | Barcode | UMI | 参考文献Reference |
---|---|---|---|---|---|---|---|
Tang2009 | ployA尾 | PCR | ~10 | 3'端偏移的全长 | No | No | [23] |
Quartz-seq | ployA尾 | PCR | 1 000-10 000 | 3'端偏移的全长 | No | No | [76] |
SUPeR-seq | ployA尾 | PCR | ~10 | 全长 | Yes | No | [67] |
MATQ-seq | ployA尾 | PCR | 10-100 | 全长 | Yes | Yes | [68] |
STRT-seq | 5'端模板转换 | PCR | 100-1 000 | 5'末端 | Yes | Yes | [37] |
Smart-seq | 5'端模板转换 | PCR | 100-1 000 | 3'偏倚的全长 | No | No | [41] |
10xGenomics | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [44] |
Seq-well | 5'端模板转换 | PCR | 100-1 000 | 3'末端 | Yes | Yes | [46] |
Microwell-seq | 5'端模板转换 | PCR | 100-10 000 | 全长 | Yes | Yes | [45] |
Drop-seq | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [43] |
CEL-seq | IVT | IVT | 100-1 000 | 3'末端 | Yes | Yes | [73] |
MARS-seq | IVT | IVT | 1 000-5 000 | 3'末端 | Yes | Yes | [27] |
inDrops | IVT | IVT | 1 000-10 000 | 3'末端 | Yes | Yes | [42] |
表1 单细胞测序技术汇总
Table 1 Summary of single cell sequencing techniques
方法 Method | cDNA合成 cDNA synthesis | 扩增方法 Amplification method | 捕获细胞量 Quantity of captured cells | cDNA覆盖 cDNA cover | Barcode | UMI | 参考文献Reference |
---|---|---|---|---|---|---|---|
Tang2009 | ployA尾 | PCR | ~10 | 3'端偏移的全长 | No | No | [23] |
Quartz-seq | ployA尾 | PCR | 1 000-10 000 | 3'端偏移的全长 | No | No | [76] |
SUPeR-seq | ployA尾 | PCR | ~10 | 全长 | Yes | No | [67] |
MATQ-seq | ployA尾 | PCR | 10-100 | 全长 | Yes | Yes | [68] |
STRT-seq | 5'端模板转换 | PCR | 100-1 000 | 5'末端 | Yes | Yes | [37] |
Smart-seq | 5'端模板转换 | PCR | 100-1 000 | 3'偏倚的全长 | No | No | [41] |
10xGenomics | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [44] |
Seq-well | 5'端模板转换 | PCR | 100-1 000 | 3'末端 | Yes | Yes | [46] |
Microwell-seq | 5'端模板转换 | PCR | 100-10 000 | 全长 | Yes | Yes | [45] |
Drop-seq | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [43] |
CEL-seq | IVT | IVT | 100-1 000 | 3'末端 | Yes | Yes | [73] |
MARS-seq | IVT | IVT | 1 000-5 000 | 3'末端 | Yes | Yes | [27] |
inDrops | IVT | IVT | 1 000-10 000 | 3'末端 | Yes | Yes | [42] |
[1] |
Fuchs E. Scratching the surface of skin development[J]. Nature, 2007, 445(7130):834-842.
doi: 10.1038/nature05659 URL |
[2] |
Niemann C, Watt FM. Designer skin:lineage commitment in postnatal epidermis[J]. Trends Cell Biol, 2002, 12(4):185-192.
doi: 10.1016/S0962-8924(02)02263-8 URL |
[3] |
Fuchs E. Epidermal differentiation:the bare essentials[J]. J Cell Biol, 1990, 111:2807-2814.
pmid: 2269655 |
[4] |
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2):233-245.
pmid: 11207364 |
[5] |
Guasch G, Blanpain C. Defining the epithelial stem cell niche in skin[J]. Med Sci(Paris), 2004, 20(3):265-267.
doi: 10.1051/medsci/2004203265 URL |
[6] |
Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells[J]. Nat Biotechnol, 2004, 22(4):411-417.
doi: 10.1038/nbt950 URL |
[7] | Wu Z, Sun L, Liu G, et al. Hair follicle development and related gene and protein expression of skins in Rex rabbits during the first 8 weeks of life[J]. Asian-Australas J Anim Sci, 2019, 32(4):477-484. |
[8] |
Messenger AG, Botchkareva NV. Unraveling the secret life of the hair follicle:from fungi to innovative hair loss therapies[J]. Exp Dermatol, 2017, 26(6):471.
doi: 10.1111/exd.13384 pmid: 28608517 |
[9] | Botchkarev VA, Paus R. Molecular biology of hair morphogenesis:development and cycling[J]. J Exp Zool B Mol Dev Evol, 2003, 298(1):164-180. |
[10] |
Watabe R, Yamaguchi T, Kabashima-Kubo R, et al. Leptin controls hair follicle cycling[J]. Exp Dermatol, 2014, 23(4):228-229.
doi: 10.1111/exd.12335 pmid: 24494978 |
[11] |
Mikkola ML. Genetic basis of skin appendage development[J]. Semin Cell Dev Biol, 2007, 18(2):225-236.
pmid: 17317239 |
[12] |
Clavel C, Grisanti L, Zemla R, et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors[J]. Dev Cell, 2012, 23(5):981-994.
doi: 10.1016/j.devcel.2012.10.013 URL |
[13] |
Morgan BA. The dermal papilla:an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle[J]. Cold Spring Harb Perspect Med, 2014, 4(7):a015180.
doi: 10.1101/cshperspect.a015180 URL |
[14] |
Yang H, Adam RC, Ge Y, et al. Epithelial-mesenchymal micro-niches govern stem cell lineage choices[J]. Cell, 2017, 169(3):483-496.e413.
doi: 10.1016/j.cell.2017.03.038 URL |
[15] |
Sequeira I, Nicolas JF. Redefining the structure of the hair follicle by 3D clonal analysis[J]. Development, 2012, 139(20):3741-3751.
pmid: 22991440 |
[16] |
Ge W, Tan SJ, Wang SH, et al. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development[J]. Theranostics, 2020, 10(17):7581-7598.
doi: 10.7150/thno.44306 URL |
[17] |
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis[J]. Exp Dermatol, 2019, 28(4):332-344.
doi: 10.1111/exd.2019.28.issue-4 URL |
[18] |
Mok KW, Saxena N, Heitman N, et al. Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent[J]. Dev Cell, 2019, 48(1):32-48.e35.
doi: 10.1016/j.devcel.2018.11.034 URL |
[19] | Joost S, Zeisel A, Jacob T, et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity[J]. Cell Syst, 2016, 3(3):221-237.e229. |
[20] |
Joost S, Annusver K, Jacob T, et al. The molecular anatomy of mouse skin during hair growth and rest[J]. Cell Stem Cell, 2020, 26(3):441-457.e447.
doi: 10.1016/j.stem.2020.01.012 URL |
[21] |
Dexter DL, Spremulli EN, Fligiel Z, et al. Heterogeneity of cancer cells from a single human colon carcinoma[J]. Am J Med, 1981, 71(6):949-956.
pmid: 7315857 |
[22] |
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques[J]. Infect Genet Evol, 2020, 80:104198.
doi: 10.1016/j.meegid.2020.104198 URL |
[23] | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. |
[24] |
Tang X, Huang Y, Lei J, et al. The single-cell sequencing:new developments and medical applications[J]. Cell Biosci, 2019, 9:53.
doi: 10.1186/s13578-019-0314-y URL |
[25] | Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics[J]. Nat Rev Genet, 2015, 16(3):133-145. |
[26] | Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2018, 50(8):96. |
[27] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172):776-779.
doi: 10.1126/science.1247651 URL |
[28] |
Crow M, Paul A, Ballouz S, et al. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor[J]. Nat Commun, 2018, 9(1):884.
doi: 10.1038/s41467-018-03282-0 URL |
[29] |
Usoskin D, Furlan A, Islam S, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing[J]. Nat Neurosci, 2015, 18(1):145-153.
doi: 10.1038/nn.3881 pmid: 25420068 |
[30] |
Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity[J]. Nat Rev Immunol, 2018, 18(1):35-45.
doi: 10.1038/nri.2017.76 URL |
[31] | Farrell JA, Wang Y, Riesenfeld SJ, et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[J]. Science, 2018, 360(6392):eaar 3131. |
[32] |
Semrau S, Goldmann JE, Soumillon M, et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells[J]. Nat Commun, 2017, 8(1):1096.
doi: 10.1038/s41467-017-01076-4 URL |
[33] |
Packer J, Trapnell C. Single-cell multi-omics:an engine for new quantitative models of gene regulation[J]. Trends Genet, 2018, 34(9):653-665.
doi: 10.1016/j.tig.2018.06.001 URL |
[34] | Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq[J]. Science, 2017, 355(6332):eaai 8478. |
[35] |
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 2014, 344(6190):1396-1401.
doi: 10.1126/science.1254257 URL |
[36] |
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58(4):610-620.
doi: 10.1016/j.molcel.2015.04.005 pmid: 26000846 |
[37] |
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7):1160-1167.
doi: 10.1101/gr.110882.110 URL |
[38] |
Natarajan KN. Single-cell tagged reverse transcription(STRT-Seq)[J]. Methods Mol Biol, 2019, 1979:133-153.
doi: 10.1007/978-1-4939-9240-9_9 pmid: 31028636 |
[39] |
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq:single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3):666-673.
doi: 10.1016/j.celrep.2012.08.003 pmid: 22939981 |
[40] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11):1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[41] |
Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8):777-782.
pmid: 22820318 |
[42] |
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201.
doi: 10.1016/j.cell.2015.04.044 URL |
[43] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[44] |
Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8:14049.
doi: 10.1038/ncomms14049 URL |
[45] |
Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172(5):1091-1107.e1017.
doi: 10.1016/j.cell.2018.02.001 URL |
[46] |
Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well:portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14(4):395-398.
doi: 10.1038/nmeth.4179 pmid: 28192419 |
[47] |
Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385):176-182.
doi: 10.1126/science.aam8999 URL |
[48] |
Lafzi A, Moutinho C, Picelli S, et al. Tutorial:guidelines for the experimental design of single-cell RNA sequencing studies[J]. Nat Protoc, 2018, 13(12):2742-2757.
doi: 10.1038/s41596-018-0073-y URL |
[49] |
Navin NE. Cancer genomics:one cell at a time[J]. Genome Biol, 2014, 15(8):452.
doi: 10.1186/s13059-014-0452-9 URL |
[50] |
Navin N, Kendall J, Troge J, et al. Tumor evolution inferred by single cell sequencing[J]. Nature, 2011, 472(7341):90-94.
doi: 10.1038/nature09807 URL |
[51] |
Rota LM, Lazzarino DA, Ziegler AN, et al. Determining mammosphere-forming potential:application of the limiting dilution analysis[J]. J Mammary Gland Biol Neoplasia, 2012, 17(2):119-123.
doi: 10.1007/s10911-012-9258-0 URL |
[52] |
Kirkness EF, Grindberg RV, Yee-Greenbaum J, et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome[J]. Genome Res, 2013, 23(5):826-832.
doi: 10.1101/gr.144600.112 pmid: 23282328 |
[53] |
Sato T, Hongoh Y, Noda S, et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut[J]. Environ Microbiol, 2009, 11(4):1007-1015.
doi: 10.1111/emi.2009.11.issue-4 URL |
[54] | McKinnon KM. Flow cytometry:an overview[J]. Curr Protoc Immunol, 2018, 120:5. 1. 1-5. 1. 11. |
[55] |
Nakamura N, Ruebel K, Jin L, et al. Laser capture microdissection for analysis of single cells[J]. Methods Mol Med, 2007, 132:11-18.
pmid: 17876072 |
[56] |
Tang F, Hajkova P, Barton SC, et al. 220-plex microRNA expression profile of a single cell[J]. Nat Protoc, 2006, 1(3):1154-1159.
doi: 10.1038/nprot.2006.161 URL |
[57] |
Sansonno D, Lauletta G, Dammacco F. Detection and quantitation of HCV core protein in single hepatocytes by means of laser capture microdissection and enzyme-linked immunosorbent assay[J]. J Viral Hepat, 2004, 11(1):27-32.
doi: 10.1046/j.1365-2893.2003.00474.x URL |
[58] |
Foley JW, Zhu C, Jolivet P, et al. Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ[J]. Genome Res, 2019, 29(11):1816-1825.
doi: 10.1101/gr.234807.118 URL |
[59] |
Beck AH, Weng Z, Witten DM, et al. 3'-end sequencing for expression quantification(3SEQ)from archival tumor samples[J]. PLoS One, 2010, 5(1):e8768.
doi: 10.1371/journal.pone.0008768 URL |
[60] |
Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip[J]. Lab Chip, 2007, 7(4):423-440.
doi: 10.1039/b615235j URL |
[61] |
Lecault V, White AK, Singhal A, et al. Microfluidic single cell analysis:from promise to practice[J]. Curr Opin Chem Biol, 2012, 16(3-4):381-390.
doi: 10.1016/j.cbpa.2012.03.022 URL |
[62] | Luni C, Giulitti S, Serena E, et al. High-efficiency cellular reprogramming with microfluidics[J]. Nat Methods, 2016, 13(5):446-452. |
[63] | Xu X, Wang J, Wu L, et al. Microfluidic single-cell omics analysis[J]. Small, 2020, 16(9):e1903905. |
[64] | Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers[J]. Nat Methods, 2014, 11(2):163-166. |
[65] |
Bhargava V, Ko P, Willems E, et al. Quantitative transcriptomics using designed primer-based amplification[J]. Sci Rep, 2013, 3:1740.
doi: 10.1038/srep01740 pmid: 23624976 |
[66] | Hebenstreit D. Methods, Challenges and potentials of single cell RNA-seq[J]. Biology(Basel), 2012, 1(3):658-667. |
[67] |
Fan X, Zhang X, Wu X, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos[J]. Genome Biol, 2015, 16(1):148.
doi: 10.1186/s13059-015-0706-1 URL |
[68] | Sheng K, Cao W, Niu Y, et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nat Methods, 2017, 14(3):267-270. |
[69] |
Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching:a SMART approach for full-length cDNA library construction[J]. Biotechniques, 2001, 30(4):892-897.
pmid: 11314272 |
[70] |
Nakamura T, Yabuta Y, Okamoto I, et al. SC3-seq:a method for highly parallel and quantitative measurement of single-cell gene expression[J]. Nucleic Acids Res, 2015, 43(9):e60.
doi: 10.1093/nar/gkv134 URL |
[71] |
Islam S, Kjällquist U, Moliner A, et al. Highly multiplexed and strand-specific single-cell RNA 5' end sequencing[J]. Nat Protoc, 2012, 7(5):813-828.
doi: 10.1038/nprot.2012.022 URL |
[72] |
Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries[J]. Genome Biol, 2011, 12(2):R18.
doi: 10.1186/gb-2011-12-2-r18 URL |
[73] |
Hashimshony T, Senderovich N, Avital G. et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17(1):1-7.
doi: 10.1186/s13059-015-0866-z URL |
[74] |
Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65(4):631-643. e634.
doi: S1097-2765(17)30049-7 pmid: 28212749 |
[75] |
Liang J, Cai W, Sun Z. Single-cell sequencing technologies:current and future[J]. J Genet Genomics, 2014, 41(10):513-528.
doi: 10.1016/j.jgg.2014.09.005 URL |
[76] |
Sasagawa Y, Nikaido I, Hayashi T, et al. Erratum to:Quartz-Seq:a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity[J]. Genome Biol, 2017, 18(1):9.
doi: 10.1186/s13059-017-1154-x pmid: 28100273 |
[77] | 葛伟. 单细胞分辨率解析绒山羊及小鼠毛囊发生的转录调控机制[D]. 杨凌:西北农林科技大学, 2019. |
Ge W. Dissecting the transcriptional regulatory mechanism underlying Cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D]. Yangling:Northwest A&F University, 2019. | |
[78] |
La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells[J]. Nature, 2018, 560(7719):494-498.
doi: 10.1038/s41586-018-0414-6 URL |
[79] |
Sennett R, Wang Z, Rezza A, et al. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin[J]. Dev Cell, 2015, 34(5):577-591.
doi: 10.1016/j.devcel.2015.06.023 pmid: 26256211 |
[80] |
He W, Ye J, Xu H, et al. Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at single-cell resolution[J]. J Cell Biochem, 2020, 121(3):2664-2676.
doi: 10.1002/jcb.v121.3 URL |
[81] |
Chovatiya G, Ghuwalewala S, Walter LD, et al. High-resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells[J]. Exp Dermatol, 2021, 30(4):457-471.
doi: 10.1111/exd.14262 pmid: 33319418 |
[82] |
Šošić D, Richardson JA, Yu K, et al. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity[J]. Cell, 2003, 112(2):169-180.
doi: 10.1016/S0092-8674(03)00002-3 URL |
[83] |
van Genderen C, Okamura RM, Fariñas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice[J]. Genes Dev, 1994, 8(22):2691-2703.
doi: 10.1101/gad.8.22.2691 URL |
[84] |
Fantauzzo KA, Tadin-Strapps M, You Y, et al. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice[J]. Hum Mol Genet, 2008, 17(22):3539-3551.
doi: 10.1093/hmg/ddn247 URL |
[85] |
Villani R, Hodgson S, Legrand J, et al. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types[J]. Development, 2017, 144(10):1887-1895.
doi: 10.1242/dev.143917 pmid: 28512199 |
[86] |
Leishman E, Howard JM, Garcia GE, et al. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18[J]. Development, 2013, 140(18):3809-3818.
doi: 10.1242/dev.097477 pmid: 23946441 |
[1] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[2] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[3] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[4] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||