生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 20-28.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1399
• 作物品质遗传与改良专题(专题主编: 刘巧泉 教授) • 上一篇 下一篇
徐妙云1(), 邢利娟1, 杨明雨2, 张凌萱2, 王磊1, 刘悦萍2()
收稿日期:
2020-11-18
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
刘悦萍,博士,教授,研究方向:植物激素代谢;E-mail: liuyueping@bua.edu.cn作者简介:
徐妙云,博士,研究员,研究方向:植物营养强化与代谢调控;E-mail: xumiaoyun@caas.cn
基金资助:
XU Miao-yun1(), XING Li-juan1, YANG Ming-yu2, ZHANG Ling-xuan2, WANG Lei1, LIU Yue-ping2()
Received:
2020-11-18
Published:
2022-04-26
Online:
2022-05-06
摘要:
当前,营养过剩和营养不均衡导致的慢性病和糖尿病人数逐年增长,开发适合慢性病人的食物,开展功能型农业生物的品种设计和选育工作,越来越受到重视。高抗性淀粉水稻和小麦被认为是对慢性病很有效的功能型食品,而高直链淀粉玉米则用途更为广泛。综合近年来对禾谷类作物淀粉合成调控网络及关键基因的研究发现,籽粒中淀粉分支酶的表达对直链淀粉的积累、抗性淀粉的形成和脂肪酸、氨基酸等营养成分,以及甾体等代谢物的改变均具有重要作用。本文对参与禾谷类作物胚乳中淀粉合成代谢的酶类、提高直链淀粉含量的方法、高抗性淀粉水稻、小麦和高直链淀粉玉米种质的创新及利用等方面进行综述,并对今后的研究方向进行展望。
徐妙云, 邢利娟, 杨明雨, 张凌萱, 王磊, 刘悦萍. 高直链淀粉禾谷类作物种质创新与利用研究进展[J]. 生物技术通报, 2022, 38(4): 20-28.
XU Miao-yun, XING Li-juan, YANG Ming-yu, ZHANG Ling-xuan, WANG Lei, LIU Yue-ping. Research Progress in Germplasm Innovation and Utilization of High Amylose Cereal Crops[J]. Biotechnology Bulletin, 2022, 38(4): 20-28.
[1] | Development Initiatives, 2018, 2018 Global Nutrition Report:Shining a light to spur action on nutrition[M]. Bristol, UK:Development Initiatives |
[2] |
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523.
doi: 10.1001/jama.2017.7596 URL |
[3] |
Wei CX, Xu BE, Qin FL, et al. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme[J]. Journal of Agricultural and Food Chemistry, 2010, 58(12):7383-7388.
doi: 10.1021/jf100385m URL |
[4] |
Cai JW, Man JM, Huang J, et al. Relationship between structure and functional properties of normal rice starches with different amylose contents[J]. Carbohydrate Polymers, 2015, 125:35-44.
doi: 10.1016/j.carbpol.2015.02.067 URL |
[5] |
Singh M, Byars JA. Jet-cooked high amylose corn starch and shortening composites for use in cake icings[J]. Journal of Food Science, 2011, 76(8):E530-E535.
doi: 10.1111/j.1750-3841.2011.02364.x URL |
[6] | Barsby T, Donald A, Frazier P. Starch:advances in structure and function[M]. UK:The Royal Society of Chemistry, Cambridge, 2001. |
[7] |
Tetlow IJ, Morell MK, Emes MJ. Recent developments in understanding the regulation of starch metabolism in higher plants[J]. Journal of Experimental Botany, 2004, 55(406):2131-2145.
pmid: 15361536 |
[8] |
Satoh H, Shibahara K, Tokunaga T, et al. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synjournal and structure of starch in the endosperm[J]. The Plant Cell, 2008, 20(7):1833-1849.
doi: 10.1105/tpc.107.054007 URL |
[9] |
James MG, Denyer K, Myers AM. Starch synjournal in the cereal endosperm[J]. Current Opinion in Plant Biology, 2003, 6(3):215-222.
doi: 10.1016/S1369-5266(03)00042-6 URL |
[10] |
Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynjournal in plants:rice endosperm as a model tissue[J]. Plant and Cell Physiology, 2002, 43(7):718-725.
doi: 10.1093/pcp/pcf091 URL |
[11] | Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice(Oryza sativa L.)[J]. Planta(Berlin), 2004, 220(1):9-16. |
[12] |
Ohdan T, Francisco PB, Sawada T, et al. Expression profiling of genes involved in starch synjournal in sink and source organs of rice[J]. Journal of Experimental Botany, 2005, 56(422):3229-3244.
doi: 10.1093/jxb/eri292 URL |
[13] |
Sano Y. Differential regulation of waxy gene expression in rice endosperm[J]. Theoretical and Applied Genetics, 1984, 68(5):467-473.
doi: 10.1007/BF00254822 pmid: 24257739 |
[14] |
Tsai CY. The function of the Waxy locus in starch synjournal in maize endosperm[J]. Biochemical. Genetics, 1974, 11(2):83-96.
pmid: 4824506 |
[15] |
Nakamura T, Yamamori M, Hirano H, et al. Production of waxy(amylose-free)wheats[J]. Molecular and General Genetics, 1995, 248(3):253-259.
doi: 10.1007/BF02191591 pmid: 7565586 |
[16] |
Hanashiro I, Itoh K, Kuratomi Y, et al. Granule-bound starch synthase I is responsible for biosynjournal of extra-long unit chains of amylopectin in rice[J]. Plant and Cell Physiology, 2008, 49(6):925-933.
doi: 10.1093/pcp/pcn066 pmid: 18430767 |
[17] |
Fujita N, Yoshida M, Asakura N, et al. Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiology, 2006, 140(3):1070-1084.
pmid: 16443699 |
[18] |
Zhang XL, Colleoni C, Ratushna V, et al. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa[J]. Plant Molecular Biology, 2004, 54(6):865-879.
doi: 10.1007/s11103-004-0312-1 URL |
[19] |
Umemoto T, Yano M, Satoh H, et al. Mapping of a gene responsible for the difference in amylopectin structure between japonica type and indica-type rice varieties[J]. Theoretical and Applied Genetics, 2002, 104(1):1-8.
pmid: 12579422 |
[20] |
Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-deficient mutants of rice:the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm[J]. Plant Physiology, 2007, 144(4):2009-2023.
pmid: 17586688 |
[21] |
Ryoo N, Yu C, Park CS, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice(Oryza sativa L.)[J]. Plant Cell Reports, 2007, 26(7):1083-1095.
doi: 10.1007/s00299-007-0309-8 URL |
[22] |
Gao M, Wanat J, Stinard PS, et al. Characterization of dull1, a maize gene coding for a novel starch synthase[J]. The Plant Cell, 1998, 10(3):399-412.
doi: 10.1105/tpc.10.3.399 URL |
[23] |
Yun SH, Matheson NK. Structures of the amylopectins of waxy, normal, amylose-extender, and wx:ae genotypes and of the phytoglycogen of maize[J]. Carbohydrate. Research, 1993, 243(2):307-321.
pmid: 8348543 |
[24] |
Baysal C, He WS, Drapal M, et al. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42):26503-26512.
doi: 10.1073/pnas.2014860117 pmid: 33020297 |
[25] |
Dinges JR, Colleoni C, James MG, et al. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism[J]. The Plant Cell, 2003, 15(3):666-680.
doi: 10.1105/tpc.007575 URL |
[26] |
Akihiro T, Mizuno K, Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA[J]. Plant and Cell Physiology, 2005, 46(6):937-946.
doi: 10.1093/pcp/pci101 URL |
[27] |
Lee SK, Hwang SK, Han M, et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synjournal in the leaf and seed endosperm of rice(Oryza sativa L.)[J]. Plant Molecular Biology, 2007, 65(4):531-546.
doi: 10.1007/s11103-007-9153-z URL |
[28] |
Smidansky ED, Martin JM, Hannah CL, et al. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase[J]. Planta, 2003, 216(4):656-664.
pmid: 12569408 |
[29] | Bhave M, Lawrence S, Barton C, et al. Identification and molecular characterization of shrunken-2 cDNA clones of maize[J]. The Plant Cell, 1990, 2(6):581-588. |
[30] |
Greene T, Hannah L. Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions[J]. The Plant Cell, 1998, 10(8):1295-1306.
pmid: 9707530 |
[31] |
Hannah LC, Shaw JR, Giroux MJ, et al. Maize genes encoding the small subunit of ADP-Glucose pyrophosphorylase[J]. Plant Physiology, 2001, 127(1):173-183.
pmid: 11553745 |
[32] |
Smidansky ED, Clancy M, Meyer FD, et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3):1724-1729.
pmid: 11830676 |
[33] |
Smidansky ED, Meyer FD, Blakeslee B, et al. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynjournal and carbon metabolism[J]. Planta, 2007, 225(4):965-976.
pmid: 17021802 |
[34] |
Kang GZ, Liu GQ, Peng XQ, et al. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene[J]. Plant Physiology and Biochemistry, 2013, 73:93-98.
doi: 10.1016/j.plaphy.2013.09.003 URL |
[35] | Miura S, Crofts N, Saito Y, et al. Starch synthase IIa-deficient mutant rice line produces endosperm starch with lower gelatinization temperature than japonica rice cultivars[J]. Frontiers in Plant Science, 2018, 15(9):645. |
[36] |
Morell MK, Kosar-Hashemi B, Cmiel M, et al. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties[J]. The Plant Journal, 2003, 34(2):173-185.
doi: 10.1046/j.1365-313X.2003.01712.x URL |
[37] | Topping DL, Morell MK, King RA, et al. Resistant starch and health-Himalaya 292, a novel barley cultivar to deliver benefits to consumers[J]. Starch, 2003, 55:539-545. |
[38] |
Nishi A, Nakamura Y, Satoh TH. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm[J]. Plant Physiology, 2001, 127(2):459-472.
pmid: 11598221 |
[39] |
Li JY, Jiao GA, Sun YW, et al. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9[J]. Plant Biotechnology Journal, 2020. DOI: 10.1111/pbi.13519.
doi: 10.1111/pbi.13519 |
[40] |
Yao Y, Guiltinan TMJ. Maize Starch-branching enzyme isoforms and amylopectin structure. In the aAbsence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching[J]. Plant Physiology, 2004, 136(3):3515-3523.
doi: 10.1104/pp.104.043315 URL |
[41] |
Umemoto T, Horibata T, Aoki N, et al. Effects of variations in starch synthase on starch properties and eating quality of rice[J]. Plant Production Science, 2008, 11(4):472-480.
doi: 10.1626/pps.11.472 URL |
[42] |
Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm[J]. Plant Physiology, 2003, 133(3):1111-1121.
doi: 10.1104/pp.103.021527 URL |
[43] |
Xia H, Yandeau-Nelson M, Thompson DB, et al. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination[J]. BMC Plant Biology, 2011, 11(1):1-13.
doi: 10.1186/1471-2229-11-1 URL |
[44] |
Blauth SL. Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn[J]. Plant Physiology, 2001, 125(3):1396-1405.
pmid: 11244119 |
[45] |
Li L, Jiang HX, Campbell M, et al. Characterization of maize amylose-extender(ae)mutant starches. Part I:Relationship between resistant starch contents and molecular structures[J]. Carbohydrate Polymers, 2008, 74(3):396-404.
doi: 10.1016/j.carbpol.2008.03.012 URL |
[46] |
Zhu L, Gu M, Meng X, et al. High-amylose rice improves indices of animal health in normal and diabetic rats[J]. Plant Biotechnology Journal, 2012, 10(3):353-362.
doi: 10.1111/j.1467-7652.2011.00667.x URL |
[47] |
Regina A, Bird A, Topping D, et al. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3546-3551.
pmid: 16537443 |
[48] |
Slade AJ, McGuire C, Loeffler D, et al. Development of high amylose wheat through TILLING[J]. BMC Plant Biology, 2012 12:69.
doi: 10.1186/1471-2229-12-69 pmid: 22584013 |
[49] |
Regina A, Kosar-Hashemi B, Ling S, et al. Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb[J]. Journal of Experimental Botany, 2010, 61(5):1469-1482.
doi: 10.1093/jxb/erq011 pmid: 20156842 |
[50] |
Asai H, Abe N, Matsushima R, et al. Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds[J]. Journal of experimental botany, 2014, 65(18):5497-5507.
doi: 10.1093/jxb/eru310 URL |
[51] | Gurunathan S, Ramadoss BR, Mudili V, et al. Single nucleotide polymorphisms in starch biosynthetic genes associated with increased resistant starch concentration in rice mutant[J]. Frontiers in Genetics, 2019, 65(10):946-955. |
[52] | 沈伟桥, 舒小丽, 张琳琳, 等. 加工型功能早籼稻新品种“浙辐201”的选育与特性[J]. 核农学报, 2006, 20(4):312-314. |
Shen WQ, Shu XL, ZHang LL, et al. Development and characteristics of processing-functional indica early rice cultivar “ZHEFU 201”[J]. Journal of Nuclear Agricultural Sciences, 2006, 20(4):312-314. | |
[53] | 杨朝柱, 李春寿, 舒小丽, 等. 富含抗性淀粉水稻突变体的淀粉特性[J]. 中国水稻科学, 2005, 19(6):516-520. |
Yang CZ, Li CS, SHu XL, et al. Starch properties of rice mutant enriched with resistant starch[J]. Chinese Journal of Rice Science, 2005, 19(6):516-520. | |
[54] |
Schönhofen A, Hazard B, Zhang X, et al. Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content[J]. Journal of Plant Registrations, 2016, 10(2):200-205.
pmid: 27818720 |
[1] | David McElroy. 外源基因在转基因禾谷类作物中的表达[J]. , 1996, 0(01): 7-10. |
[2] | 田桂英. 向植物导入外源DNA方法的研究与发展[J]. , 1995, 0(03): 4-7. |
[3] | 邵宏波;初立业;厉彩虹;刘德玉. 禾谷类原生质体培养研究及展望[J]. , 1994, 0(02): 1-3. |
[4] | 孙雷心;. 新的单子叶作物高效表达载体[J]. , 1992, 0(10): 6-6. |
[5] | 李思经;. 玉米原生质体再生可育性植株[J]. , 1990, 0(05): 7-8. |
[6] | 李思经;. 禾谷类作物遗传转化的筛选方法[J]. , 1990, 0(05): 8-8. |
[7] | E.C.Cocking;M.R.Davey;王春林;. 禾谷类作物的基因转移[J]. , 1988, 0(10): 1-6. |
[8] | 马亚敏;. 对禾谷类作物进行遗传操作的一些新方法[J]. , 1987, 0(11): 12-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||