[1] |
Chandler D, Bailey AS, Tatchell GM, et al. The development, regulation and use of biopesticides for integrated pest management[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1573):1987-1998.
doi: 10.1098/rstb.2010.0390
URL
|
[2] |
Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis:a story of a successful bioinsecticide[J]. Insect Biochem Mol Biol, 2011, 41(7):423-431.
doi: 10.1016/j.ibmb.2011.02.006
URL
|
[3] |
国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1):114-119.
|
|
International Service for the Application of Agricultural Biotechnology. Global commercialization trend of biotechnology/GM crops in 2019[J]. China Biotechnol, 2021, 41(1):114-119.
|
[4] |
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annu Rev Entomol, 2021, 66:121-140.
doi: 10.1146/annurev-ento-052620-073348
pmid: 33417820
|
[5] |
Abbas MST. Genetically engineered(modified)crops(Bacillus thuringiensis crops)and the world controversy on their safety[J]. Egypt J Biol Pest Control, 2018, 28(1):1-12.
doi: 10.1186/s41938-017-0002-3
URL
|
[6] |
徐重新, 张霄, 刘媛, 等. 抗独特型抗体在食用农产品危害物监控中的应用研究[J]. 食品科学技术学报, 2019, 37(4):103-110.
|
|
Xu CX, Zhang X, Liu Y, et al. Study on anti-idiotype antibodies used for monitoring hazards in edible agricultural products[J]. J Food Sci Technol, 2019, 37(4):103-110.
|
[7] |
Hanoux V, Wijkhuisen A, Alexandrenne C, et al. Polyclonal anti-idiotypic antibodies which mimic an epitope of the human prion protein[J]. Mol Immunol, 2009, 46(6):1076-1083.
doi: 10.1016/j.molimm.2008.09.033
URL
|
[8] |
Lan HN, Zheng X, Khan MA, et al. Anti-idiotypic antibody:a new strategy for the development of a growth hormone receptor antagonist[J]. Int J Biochem Cell Biol, 2015, 68:101-108.
doi: 10.1016/j.biocel.2015.09.004
URL
|
[9] |
Shu M, Xu Y, Liu X, et al. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins:Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal[J]. Anal Chim Acta, 2016, 924:53-59.
doi: 10.1016/j.aca.2016.03.053
URL
|
[10] |
Qiu Y, Li P, Dong S, et al. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody[J]. J Agric Food Chem, 2018, 66(4):950-956.
doi: 10.1021/acs.jafc.7b04923
URL
|
[11] |
徐重新, 杨晶祎, 陆梦晓, 等. 间接竞争时间分辨荧光免疫分析法检测稻米中Cry1C毒素[J]. 南京农业大学学报, 2014, 37(6):44-48.
|
|
Xu CX, Yang JY, Lu MX, et al. Indirect competitive TRFIA(CI-TRFIA)method development for the determination of Cry1C toxin in rice[J]. J Nanjing Agric Univ, 2014, 37(6):44-48.
|
[12] |
Lee CM, Iorno N, Sierro F, et al. Selection of human antibody fragments by phage display[J]. Nat Protoc, 2007, 2(11):3001-3008.
doi: 10.1038/nprot.2007.448
URL
|
[13] |
Zhang X, Liu Y, Zhang CZ, et al. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis(Bt)Cry1B toxin[J]. Ecotoxicol Environ Saf, 2012, 81:84-90.
doi: 10.1016/j.ecoenv.2012.04.021
URL
|
[14] |
Xu C, Liu X, Zhang C, et al. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library[J]. Anal Biochem, 2017, 518:53-59.
doi: 10.1016/j.ab.2016.11.006
URL
|
[15] |
仲建锋, 李兴奎, 徐重新, 等. Cry1B抗独特型单链抗体的定点突变及生物活性分析[J]. 生物技术通报, 2021, 1-10.
|
|
Zhong Jianfeng, Li Xingkui, Xu Chongxin, et al. Enhanced insecticide activity of anti-idiotypic single chain Fragment variable antibody against Cry1B by site-directed mutagenesis[J]. Biotechnol Bulletin, 37(10):186-195.
|
[16] |
Ossysek K, Uchański T, Kulesza M, et al. A new expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries[J]. Immunol Lett, 2015, 167(2):95-102.
doi: 10.1016/j.imlet.2015.07.005
URL
|
[17] |
Sokolowska-Wedzina A, Chodaczek G, Chudzian J, et al. High-affinity internalizing human scFv-fc antibody for targeting FGFR1-overexpressing lung cancer[J]. Mol Cancer Res, 2017, 15(8):1040-1050.
doi: 10.1158/1541-7786.MCR-16-0136
pmid: 28483948
|
[18] |
de la Cruz S, Cubillos-Zapata C, López-Calleja IM, et al. Isolation of recombinant antibody fragments(scFv)by phage display technology for detection of almond allergens in food products[J]. Food Control, 2015, 54:322-330.
doi: 10.1016/j.foodcont.2015.02.011
URL
|
[19] |
Dong S, Bo Z, Zhang C, et al. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library[J]. Appl Microbiol Biotechnol, 2018, 102(7):3363-3374.
doi: 10.1007/s00253-018-8797-8
pmid: 29484477
|
[20] |
Hao J, Li YH, Wang JX, et al. Screening and activity identification of an anti-idiotype nanobody for Bt Cry1F toxin from the camelid naive antibody phage display library[J]. Food Agric Immunol, 2020, 31(1):1-16.
doi: 10.1080/09540105.2019.1691156
URL
|
[21] |
Xu C, Liu X, Liu Y, et al. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay[J]. Talanta, 2019, 197:397-405.
doi: 10.1016/j.talanta.2019.01.064
URL
|
[22] |
Zhao AZ, Tohidkia MR, Siegel DL, et al. Phage antibody display libraries:a powerful antibody discovery platform for immunotherapy[J]. Crit Rev Biotechnol, 2016, 36(2):276-289.
doi: 10.3109/07388551.2014.958978
URL
|
[23] |
Xie Y, Xu C, Gao M, et al. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth(Plutella xylostella)[J]. Pest Manag Sci, 2021, 77(10):4593-4606.
doi: 10.1002/ps.6499
URL
|
[24] |
Simons JF, Lim YW, Carter KP, et al. Affinity maturation of antibodies by combinatorial Codon mutagenesis versus error-prone PCR[J]. MAbs, 2020, 12(1):1803646.
doi: 10.1080/19420862.2020.1803646
URL
|