生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 171-177.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1294
周诗晨1(), 仪治本2, 王馨翊1, 杨晓颖1, 孙丽娜1, 栾维江1(), 梁闪闪1()
收稿日期:
2021-10-13
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
周诗晨,女,硕士研究生,研究方向:植物遗传学;E-mail: 基金资助:
ZHOU Shi-chen1(), YI Zhi-ben2, WANG Xin-yi1, YANG Xiao-ying1, SUN Li-na1, LUAN Wei-jiang1(), LIANG Shan-shan1()
Received:
2021-10-13
Published:
2022-07-26
Online:
2022-08-09
摘要:
穗粒数对作物产量至关重要,对高粱双粒突变体基因进行定位,为下一步的基因克隆和功能分析奠定基础,为高粱产量性状的调控和解析提供依据。利用体视镜观察野生型和双粒突变体花器官表型,通过构建单粒材料晋粱5号和双粒突变体杂交的F2群体,分析突变体的遗传规律,采用BSA-seq测序与图位克隆相结合的方法进行连锁分析及基因定位。结果表明,与野生型相比,双粒突变体雌蕊和雄蕊数目增加,最终结一壳双粒;遗传分析表明双粒性状受1对显性基因控制;基因定位显示目的基因位于高粱第6染色体Indel2930和SSR7060标记之间,物理距离为404 kb。Dgs是一个全新的高粱双粒突变基因。
周诗晨, 仪治本, 王馨翊, 杨晓颖, 孙丽娜, 栾维江, 梁闪闪. 高粱双粒突变体Dgs的遗传分析与基因定位[J]. 生物技术通报, 2022, 38(7): 171-177.
ZHOU Shi-chen, YI Zhi-ben, WANG Xin-yi, YANG Xiao-ying, SUN Li-na, LUAN Wei-jiang, LIANG Shan-shan. Genetic Analysis and Gene Mapping of Sorghum Double-grain Mutant Dgs[J]. Biotechnology Bulletin, 2022, 38(7): 171-177.
图1 野生型晋粱5号和突变体Dgs小花及籽粒的表型 A:野生型晋粱5号的小花;B:突变体Dgs小花;C:野生型晋粱5号的籽粒;D:突变体Dgs籽粒
Fig.1 Phenotype of the floret and grain of wild-type S. bicolor Jin 5 and mutant Dgs A:Flower of wild-type S. bicolor Jin 5. B:Flower of mutant Dgs. C:Grain of wild-type S. bicolor Jin 5. D:Grain of mutant Dgs
杂交组合 Cross | 双粒单株个体数 Number of double-grain individuals | 单粒单株个体数 Number of single-grain individuals | 总数 Total | χ2(3∶1) | P |
---|---|---|---|---|---|
晋梁5号 × 双粒突变体 S. bicolor Jin 5 × Dgs | 313 | 117 | 430 | 1.119 | 0.290 |
表1 晋粱5号×Dgs F2群体表型统计分析
Table 1 Statistical analysis of phenotype of F2 population from S. bicolor Jin 5×Dgs
杂交组合 Cross | 双粒单株个体数 Number of double-grain individuals | 单粒单株个体数 Number of single-grain individuals | 总数 Total | χ2(3∶1) | P |
---|---|---|---|---|---|
晋梁5号 × 双粒突变体 S. bicolor Jin 5 × Dgs | 313 | 117 | 430 | 1.119 | 0.290 |
样品 Sample | 初始测序reads数目 Raw reads | 过滤后的reads数 Clean reads | 过滤后碱基数 Clean base | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|---|
双粒突变体 Dgs | 39 005 403 | 38 995 403 | 11 679 957 024 | 97.83 | 93.6 | 43.28 |
晋粱5号 Jin5 | 38 666 782 | 38 656 413 | 11 579 578 194 | 97.74 | 93.44 | 43.86 |
单粒混池/ Single-grain bulk(S bulk) | 148 822 039 | 148 768 510 | 44 563 912 284 | 97.61 | 93.15 | 43.25 |
双粒混池/ Double-grain bulk(D bulk) | 156 721 594 | 156 668 065 | 46 930 613 822 | 97.58 | 93.26 | 43.67 |
表2 测序数据质量情况
Table 2 Statistics from the qualities of the sequencing
样品 Sample | 初始测序reads数目 Raw reads | 过滤后的reads数 Clean reads | 过滤后碱基数 Clean base | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|---|
双粒突变体 Dgs | 39 005 403 | 38 995 403 | 11 679 957 024 | 97.83 | 93.6 | 43.28 |
晋粱5号 Jin5 | 38 666 782 | 38 656 413 | 11 579 578 194 | 97.74 | 93.44 | 43.86 |
单粒混池/ Single-grain bulk(S bulk) | 148 822 039 | 148 768 510 | 44 563 912 284 | 97.61 | 93.15 | 43.25 |
双粒混池/ Double-grain bulk(D bulk) | 156 721 594 | 156 668 065 | 46 930 613 822 | 97.58 | 93.26 | 43.67 |
图3 部分F2代隐性单株的PCR产物凝胶电泳图 A:InDel2930标记检测;B:InDel6958标记检测;M:双粒突变体亲本;WT:晋粱5号亲本;1-22:F2代单粒单株。▲:交换单株
Fig. 3 PCR agarose gel electrophoresis of partial F2 reces-sive individuals A:Marker detection of InDel2930. B:Marker detection of InDel6958. M:Parent of the double-grain mutant Dgs. WT:Parent of Jin 5. 1-22:Single-seed individuals in F2 generation. ▲:Recombinant line
标记名称 Maker | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Indel2930 | CGACGCCGGGATTTCCATTT | TTGGTCCACATCCGAGCAGG |
Indel6958 | ATTTACGGGTAGCGAGCACT | GGCCGTATCCTCAATCCTGT |
SSR7060 | GCACACCACCGAGTCAGC | CTCCTCCACCTGCAGCAT |
SSR1018 | ACCTGTAAATTCCATGCATCGT | CAGAAGGTCAACTGTTTCTCCC |
SSR2629 | CAAATAACAGCCCCCAAAGG | CTGCTAAGGCGTGCTTTATT |
SSR9952 | CGCAAATGACGAGTCTTGGT | AGTCGGATCTGATCTAATCGCA |
SSR8023 | GTGTACGTGACGCGGTGAAA | GTCGTCTCCCTGGTATGTATGG |
表3 Dgs连锁分析的主要引物信息
Table 3 Information of primers used for linkage analysis of Dgs
标记名称 Maker | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Indel2930 | CGACGCCGGGATTTCCATTT | TTGGTCCACATCCGAGCAGG |
Indel6958 | ATTTACGGGTAGCGAGCACT | GGCCGTATCCTCAATCCTGT |
SSR7060 | GCACACCACCGAGTCAGC | CTCCTCCACCTGCAGCAT |
SSR1018 | ACCTGTAAATTCCATGCATCGT | CAGAAGGTCAACTGTTTCTCCC |
SSR2629 | CAAATAACAGCCCCCAAAGG | CTGCTAAGGCGTGCTTTATT |
SSR9952 | CGCAAATGACGAGTCTTGGT | AGTCGGATCTGATCTAATCGCA |
SSR8023 | GTGTACGTGACGCGGTGAAA | GTCGTCTCCCTGGTATGTATGG |
[1] |
Takanashi H, Shichijo M, Sakamoto L, et al. Genetic dissection of QTLs associated with spikelet-related traits and grain size in Sorghum[J]. Sci Rep, 2021, 11(1):9398.
doi: 10.1038/s41598-021-88917-x pmid: 33931706 |
[2] |
Burow G, Xin ZG, Hayes C, et al. Characterization of a multiseeded(msd1)mutant of Sorghum for increasing grain yield[J]. Crop Sci, 2014, 54(5):2030-2037.
doi: 10.2135/cropsci2013.08.0566 URL |
[3] |
Nagasawa N, Miyoshi M, Kitano H, et al. Mutations associated with floral organ number in rice[J]. Planta, 1996, 198(4):627-633.
doi: 10.1007/BF00262651 URL |
[4] |
Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to ArabidopsisCLAVATA1[J]. Development, 2004, 131(22):5649-5657.
doi: 10.1242/dev.01441 URL |
[5] |
Suzaki T, Toriba T, Fujimoto M, et al. Conservation and diversification of meristem maintenance mechanism in Oryza sativa:Function of the FLORAL ORGAN NUMBER2 gene[J]. Plant Cell Physiol, 2006, 47(12):1591-1602.
doi: 10.1093/pcp/pcl025 URL |
[6] |
Chu HW, Qian Q, Liang WQ, et al. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice[J]. Plant Physiol, 2006, 142(3):1039-1052.
doi: 10.1104/pp.106.086736 URL |
[7] |
Jiang L, Qian Q, Mao L, et al. Characterization of the rice floral organ number mutant fon3[J]. J Integr Plant Biol, 2005, 47(1):100-106.
doi: 10.1111/j.1744-7909.2005.00017.x URL |
[8] |
Jiang L, Zhang WL, Xia ZH, et al. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L[J]. Mol Genet Genom, 2007, 277(3):263-272.
doi: 10.1007/s00438-006-0196-7 URL |
[9] | 张向前, 邹金松, 朱海涛, 等. 水稻早熟多子房突变体fon5的遗传分析和基因定位[J]. 遗传, 2008, 30(10):1349-1355. |
Zhang XQ, Zou JS, Zhu HT, et al. Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice(Oryza sativa L.)[J]. Hereditas, 2008, 30(10):1349-1355. | |
[10] |
罗伟雄, 李明, 陈军, 等. 一个新的水稻花器官突变体的鉴定和基因定位[J]. 植物学报, 2011, 46(5):506-513.
doi: 10.3724/SP.J.1259.2011.00506 |
Luo WX, Li M, Chen J, et al. Characterization and gene mapping of a novel mutant in rice floral organs[J]. Chin Bull Bot, 2011, 46(5):506-513. | |
[11] | Cron AB. Triple-seeded spikelets in sorghum[J]. Agronj, 1916, 8(4):237-238. |
[12] |
Karper RE. Floral abnormalities in sorghum[J]. J Hered, 1936, 27(5):183-194.
doi: 10.1093/oxfordjournals.jhered.a104204 URL |
[13] |
Jiao Y, Lee YK, Gladman N, et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway[J]. Nat Commun, 2018, 9(1):822.
doi: 10.1038/s41467-018-03238-4 URL |
[14] |
Gladman N, Jiao YP, Lee YK, et al. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module[J]. Int J Mol Sci, 2019, 20(19):4951.
doi: 10.3390/ijms20194951 URL |
[15] |
Casady AJ, Ross WM. Effect of the twin-seeded character on sorghum performance[J]. Crop Sci, 1977, 17(1):117-120.
doi: 10.2135/cropsci1977.0011183X001700010032x URL |
[16] | 梁小红, 仪治本, 张振刚, 等. 高粱TW960双粒结实特性的遗传分析[J]. 国外农学-杂粮作物, 1999, 19(3):51. |
Liang XH, Yi ZB, Zhang ZG, et al. Genetic analysis of double grain setting characteristics in Sorghum TW960[J]. Coarse Drain Crops, 1999(3):51. | |
[17] | 刘明慧, 高秋霞. 复粒小穗高粱种质资源结构及遗传分析[J]. 中国农业科学, 2007, 40(3):628-632. |
Liu MH, Gao QX. Genetic analysis of multiple grain sorghum germ plasm and spikelet structure anatomical analysis[J]. Sci Agric Sin, 2007, 40(3):628-632. | |
[18] |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5):589-595.
doi: 10.1093/bioinformatics/btp698 URL |
[19] |
McCormick RF, Truong SK, Sreedasyam A, et al. The Sorghum bicolor reference genome:improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization[J]. Plant J, 2018, 93(2):338-354.
doi: 10.1111/tpj.13781 URL |
[20] |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 URL |
[21] |
Mansfeld BN, Grumet R. QTLseqr:an R package for bulk segregant analysis with next-generation sequencing[J]. Plant Genome, 2018, 11(2). DOI: 10.3835/plantgenome2018.01.0006.
doi: 10.3835/plantgenome2018.01.0006 |
[22] |
Albert AV, Kavaĭ-ool UN, Ezhova TA. Gene NANA regulates cell proliferation in Arabidopsis thaliana shoot apical meristem without interaction with CLV1, CLV2, CLV3[J]. Russian Journal of Developmental Biology, 2014, 45(5):267-272.
doi: 10.1134/S1062360414050026 URL |
[23] |
Li Y, Xu PZ, Zhang HY, et al. Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice[J]. J Genet Genom, 2007, 34(8):730-737.
doi: 10.1016/S1673-8527(07)60082-4 URL |
[24] |
Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity:20 years of ABCs[J]. Semin Cell Dev Biol, 2010, 21(1):73-79.
doi: 10.1016/j.semcdb.2009.10.005 pmid: 19883777 |
[25] |
Xiao H, Wang Y, Liu D, et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference[J]. Plant Mol Biol, 2003, 52(5):957-966.
pmid: 14558657 |
[26] |
Wu HM, Xie DJ, Tang ZS, et al. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J]. Plant Biotechnol J, 2020, 18(8):1778-1795.
doi: 10.1111/pbi.13340 URL |
[27] |
王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6):1149-1158.
doi: 10.3969/j.issn.1004-1524.2021.06.21 |
Wang Y, Mu YX, Wang J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agric Zhejiangensis, 2021, 33(6):1149-1158. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[3] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
[4] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
[5] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[6] | 江佰阳, 白文斌, 张建华, 范娜, 史丽娟. 高粱抗旱性鉴定方法及分子生物学研究进展[J]. 生物技术通报, 2021, 37(4): 260-272. |
[7] | 张一中, 范昕琦, 杨慧勇, 张晓娟, 邵强, 梁笃, 郭琦, 柳青山, 杜维俊. 基于简化基因组测序高粱育种材料亲缘关系的分析[J]. 生物技术通报, 2020, 36(12): 21-33. |
[8] | 张丹, 王楠, 李超, 谢旗, 唐三元. 甜高粱——一种优质的饲料作物[J]. 生物技术通报, 2019, 35(5): 2-8. |
[9] | 冷传远, 郝怀庆, 景海春. 甜高粱茎秆持汁性研究进展[J]. 生物技术通报, 2019, 35(5): 9-14. |
[10] | 韩立杰, 才宏伟. 高粱粒重遗传研究进展[J]. 生物技术通报, 2019, 35(5): 15-27. |
[11] | 丁延庆, 周棱波, 汪灿, 曹宁, 程斌, 高旭, 彭秋, 邵明波, 张立异. 酱香型酒用糯高粱研究进展[J]. 生物技术通报, 2019, 35(5): 28-34. |
[12] | 宋玉双, 隋娜. 甜高粱FAD7基因的功能分析[J]. 生物技术通报, 2019, 35(5): 35-41. |
[13] | 王平, 丛玲, 王春语, 朱振兴, AAshokKumar, 张丽霞, 陆晓春. 高粱A1型细胞质雄性不育系与保持系线粒体基因组分析比较[J]. 生物技术通报, 2019, 35(5): 42-47. |
[14] | 袁闯, 许兴, 唐三元, 毛桂莲, 朱林. 孕穗期甜高粱耐旱性鉴定[J]. 生物技术通报, 2019, 35(12): 1-9. |
[15] | 王平, 王春语, 张丽霞, 丛玲, 朱振兴, 陆晓春. 利用重测序技术开发高粱多态性SSR分子标记[J]. 生物技术通报, 2019, 35(11): 217-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||