生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 59-72.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0342
刘佳欣1,2,3(), 张会龙1,2,3, 邹荣松1,2,3, 杨秀艳1,2,3, 朱建峰1,2,3(), 张华新1,2,3()
收稿日期:
2022-03-22
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
刘佳欣,硕士研究生,研究方向:耐盐碱树木分子生物学;E-mail: 基金资助:
LIU Jia-xin1,2,3(), ZHANG Hui-long1,2,3, ZOU Rong-song1,2,3, YANG Xiu-yan1,2,3, ZHU Jian-feng1,2,3(), ZHANG Hua-xin1,2,3()
Received:
2022-03-22
Published:
2023-01-26
Online:
2023-02-02
摘要:
盐生植物是指能在离子浓度至少200 mmol/L以上的生境中生长并完成生活史的植物。盐生植物可分为稀盐盐生植物、泌盐盐生植物、拒盐盐生植物三类。本文从生长形态、生理和分子3个方面总结三类盐生植物响应盐胁迫的不同策略及研究进展,发现盐生植物在分子水平上主要通过Na+转运蛋白和为其提供能量的两类基因应对体内过高Na+,这可能是引起盐生植物生理和生长形态异于非盐生植物的重要因素。其中稀盐盐生植物主要通过液泡离子区隔化应对盐胁迫,并表现出肉质化生长形态;泌盐盐生植物通过将体内盐分排出体外应对盐胁迫,并进化出特有的生理结构——盐腺或盐囊泡;拒盐盐生植物通过将盐离子积累在皮层细胞液泡和根部木质部薄壁细胞中减少向上运输Na+,同时根部多栓质化减少Na+吸收。本综述旨在为今后研究盐生植物及其耐盐机制提供相关依据,为植物耐盐分子育种奠定基础。
刘佳欣, 张会龙, 邹荣松, 杨秀艳, 朱建峰, 张华新. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展[J]. 生物技术通报, 2023, 39(1): 59-72.
LIU Jia-xin, ZHANG Hui-long, ZOU Rong-song, YANG Xiu-yan, ZHU Jian-feng, ZHANG Hua-xin. Research Progress in Na+ Antiport and Physiological Growth Mechanisms of Differernt Halophytes Adapted to Salt Stress[J]. Biotechnology Bulletin, 2023, 39(1): 59-72.
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
NsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
SsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐地碱蓬Suaeda salsa | [ |
SbNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化和维持离子稳态的过程 | 海蓬子Sal Icornia brachiate | [ |
SeNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐角草Sal Icornia europaea | [ |
KfNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 可能增强将Na+区隔化至液泡的能力 | 盐爪爪Kalidium foliatum | [ |
HcNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔化 | 盐穗木Halostachys caspica | [ |
NsSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将胞质中过量的Na+排出到胞外 | 西伯利亚白刺Nitraria sibirica | [ |
SsHKT1 | 高亲和性K+转运蛋白基因 | 减少根木质部Na+回收,协调SsSOS1和SsNHX1维持Na+积累 | 盐地碱蓬Suaeda salsa | [ |
SsHAK2 | 高亲和性K+转运蛋白基因 | 参与K+吸收及转运过程 | 盐地碱蓬Suaeda salsa | [ |
AQP | 编码水通道蛋白基因 | 离子区隔化 | 盐地碱蓬Suaeda salsa | [ |
HcPIP1 | 水通道蛋白家族亚类质膜内嵌蛋白基因 | 在胁迫时能够通过增加根的生长以抵御胁迫的影响 | 盐穗木Halostachys caspica | [ |
NsVP1 | 液泡膜H+-PPase基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
KfVP1 | 液泡膜H+-PPase基因 | 离子的调控运输中发挥作用 | 盐爪爪Kalidium foliatum | [ |
HcVP1 | 液泡膜H+-PPase基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
HcVHA-B | 液泡膜H+-ATPase亚基B基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
表1 稀盐盐生植物关键耐盐基因
Table 1 Key salt-tolerant genes in euhalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
NsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
SsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐地碱蓬Suaeda salsa | [ |
SbNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化和维持离子稳态的过程 | 海蓬子Sal Icornia brachiate | [ |
SeNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐角草Sal Icornia europaea | [ |
KfNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 可能增强将Na+区隔化至液泡的能力 | 盐爪爪Kalidium foliatum | [ |
HcNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔化 | 盐穗木Halostachys caspica | [ |
NsSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将胞质中过量的Na+排出到胞外 | 西伯利亚白刺Nitraria sibirica | [ |
SsHKT1 | 高亲和性K+转运蛋白基因 | 减少根木质部Na+回收,协调SsSOS1和SsNHX1维持Na+积累 | 盐地碱蓬Suaeda salsa | [ |
SsHAK2 | 高亲和性K+转运蛋白基因 | 参与K+吸收及转运过程 | 盐地碱蓬Suaeda salsa | [ |
AQP | 编码水通道蛋白基因 | 离子区隔化 | 盐地碱蓬Suaeda salsa | [ |
HcPIP1 | 水通道蛋白家族亚类质膜内嵌蛋白基因 | 在胁迫时能够通过增加根的生长以抵御胁迫的影响 | 盐穗木Halostachys caspica | [ |
NsVP1 | 液泡膜H+-PPase基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
KfVP1 | 液泡膜H+-PPase基因 | 离子的调控运输中发挥作用 | 盐爪爪Kalidium foliatum | [ |
HcVP1 | 液泡膜H+-PPase基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
HcVHA-B | 液泡膜H+-ATPase亚基B基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
SaNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | 控制液泡膜中活性K+的摄取,同时调节气孔的关闭 | 互花米草Spartina alterniflora | [ |
AmNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+转运到液泡中 | 海榄雌Avicennia maritima | [ |
AgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 保持离子平衡 | 北滨黎Atriplex gmelini | [ |
McNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
LsNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+的囊泡化转运活动 | 中华补血草Limonium sinense | [ |
BgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+区隔化作用 | 木榄Bruguiera gymnorrhiz | [ |
AmSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将多余的Na+泵出细胞 | 海榄雌Avicennia maritima | [ |
AcSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
AcHKT1 | 高亲和K+转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McHKT1 | 高亲和K+转运蛋白基因 | 将Na+转运到液泡中 | 冰叶日中花Mesembryanthemum crystallinum | [ |
ThVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 具有抗逆性作用 | 刚毛柽柳Tamarix hispida | [ |
SaVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 参与能量供应 | 互花米草Spartina alterniflora | [ |
AhVP | 液泡膜H+-PPase基因 | 对渗透和/或离子压力的耐受性 | 滨藜Atriplex halimus | [ |
ThVP1 | 液泡膜H+-PPase基因 | 参与Na+的隔离 | 刚毛柽柳Tamarix hispida | [ |
AmHA1 | 质膜H+-ATPase基因 | 参与能量供应 | 海榄雌Avicennia maritima | [ |
PIP and TIP | 水通道蛋白基因 | 参与盐腺脱盐过程中水的再吸收 | 海茄冬Avicennia officinalis | [ |
CLC | 质膜Cl-通道基因 | 将Cl-区域化为囊泡维持电荷平衡 | 二色补血草Limonium bicolor | [ |
表2 泌盐盐生植物关键耐盐基因
Table 2 Key salt-tolerant genes in recretohalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
SaNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | 控制液泡膜中活性K+的摄取,同时调节气孔的关闭 | 互花米草Spartina alterniflora | [ |
AmNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+转运到液泡中 | 海榄雌Avicennia maritima | [ |
AgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 保持离子平衡 | 北滨黎Atriplex gmelini | [ |
McNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
LsNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+的囊泡化转运活动 | 中华补血草Limonium sinense | [ |
BgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+区隔化作用 | 木榄Bruguiera gymnorrhiz | [ |
AmSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将多余的Na+泵出细胞 | 海榄雌Avicennia maritima | [ |
AcSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
AcHKT1 | 高亲和K+转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McHKT1 | 高亲和K+转运蛋白基因 | 将Na+转运到液泡中 | 冰叶日中花Mesembryanthemum crystallinum | [ |
ThVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 具有抗逆性作用 | 刚毛柽柳Tamarix hispida | [ |
SaVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 参与能量供应 | 互花米草Spartina alterniflora | [ |
AhVP | 液泡膜H+-PPase基因 | 对渗透和/或离子压力的耐受性 | 滨藜Atriplex halimus | [ |
ThVP1 | 液泡膜H+-PPase基因 | 参与Na+的隔离 | 刚毛柽柳Tamarix hispida | [ |
AmHA1 | 质膜H+-ATPase基因 | 参与能量供应 | 海榄雌Avicennia maritima | [ |
PIP and TIP | 水通道蛋白基因 | 参与盐腺脱盐过程中水的再吸收 | 海茄冬Avicennia officinalis | [ |
CLC | 质膜Cl-通道基因 | 将Cl-区域化为囊泡维持电荷平衡 | 二色补血草Limonium bicolor | [ |
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源Gene resource | 参考文献 Reference |
---|---|---|---|---|
cNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 柑橘Citrus×paradisi | [ | |
PtNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅Puccinellia tenuiflora | [ |
Pt SOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅P. tenuiflora | [ |
Pt HKT1;5 | 高亲和K+转运蛋白基因 | 将Na+从木质部排到木质部薄壁细胞 | 小花碱茅P. tenuiflora | [ |
表3 拒盐盐生植物关键耐盐基因
Table 3 Key salt-tolerant genes in pseudohalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源Gene resource | 参考文献 Reference |
---|---|---|---|---|
cNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 柑橘Citrus×paradisi | [ | |
PtNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅Puccinellia tenuiflora | [ |
Pt SOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅P. tenuiflora | [ |
Pt HKT1;5 | 高亲和K+转运蛋白基因 | 将Na+从木质部排到木质部薄壁细胞 | 小花碱茅P. tenuiflora | [ |
图1 三类盐生植物Na+逆向转运耐盐机制模式图 (a):在稀盐植物中,一部分Na+通过质膜Na+/H+逆向转运蛋白SOS1排出到胞外,并需要质膜H+-ATPase酶水解提供能量和H+,另一部分Na+通过液泡膜Na+/H+逆向转运蛋白NHX由胞质进入到液泡(vacuole)中,并需要液泡膜 H+-ATPase酶和液泡H+-PPase酶水解提供能量和H+[102-103];(b):在具有特殊泌盐结构——盐囊泡的泌盐植物中,Na+由叶肉细胞(mesophyll cell)经由柄细胞(stalk cell)进入到囊泡细胞,胞质Na+在质膜Na+/H+逆向转运蛋白SOS1的作用下排出,胞质中另一部分Na+通过液泡膜Na+/H+逆向转运蛋白NHX运输到液泡进行分隔,同时需要质膜H+-ATPase酶、液泡膜 H+-ATPase酶和液泡H+-PPase酶水解为此过程提供能量和H+[104-105];(c):在拒盐盐生植物根部Na+通过高亲和K+转运蛋白HKT1进入到木质部(xylem)薄壁细胞中[29],胞质Na+通过质膜Na+/H+逆向转运蛋白SOS1排出胞外和液泡膜Na+/H+逆向转运蛋白NHX区隔到液泡中,此过程也需要质膜H+-ATPase酶、液泡膜 H+-ATPase酶和液泡H+-PPase酶水解提供能量和H+。HKT1:高亲和K+转运蛋白;SOS1:质膜Na+/H+逆向转运蛋白;NHX:液泡膜Na+/H+逆向转运蛋白;ATP:三磷酸腺苷;ADP:二磷酸腺苷;PPi:焦磷酸盐;PM-ATPase:质膜H+-ATPase;V-ATPase:液泡膜H+-ATPase;V-PPase:液泡膜H+-ATPase
Fig. 1 Model diagram of Na+ antiport mechanisms for salt tolerance in three halophytes (a):In euhalophytes,some Na+ are excreted out of the cell through plasma membrane Na+/H+ antiporter SOS1,and require plasma membrane H+-ATPase enzymatic hydrolysis to provide energy and H+,while the other enter the vacuole from the cytoplasm through vacuole membrane Na+/H+ antiporter NHX. vacuolar membrane H+-ATPase enzyme and vacuolar H+-PPase enzyme hydrolysis to provide energy and H+[104].(b):Recretohalophytes have a special salt-secreting structure called salt bladder,Na+ enters salt bladder from mesophyll cells via stalk cell,and the cytoplasmic Na+ is excreted under the vesicle cell of plasma membrane Na+/H+ antitransporter SOS1. The other Na+ in the cytoplasm is transported to the vacuole through the vacuolar membrane Na+/H+ antiporter NHX for separation. Meanwhile,plasma membrane H+-ATPase,vacuolar membrane H+-ATPase and vacuolar H+-PPase enzymes are required for hydrolysis to provide energy and H+[105].(c):In the roots of pseudohalophytes,Na+ enters into xylem parenchyma cells through the highly affinity K+ transporter HKT1[29],and the cytoplasmic Na+ is excreted into vacuoles through the plasmic membrane Na+/H+ antiporter SOS1. This process also requires plasma membrane H+-ATPase,vacuolar membrane H+-ATPase and vacuolar H+-PPase enzymes hydrolysis to provide energy and H+. HKT1:High-affinity potassium transporter 1;SOS1:plasma membrane Na+/H+ exchanger 1;NHX:vacuolar Na+/H+ antiporter 1;ATP:adenosine triphosphate;ADP:adenosine diphosphate;PPi:pyrophosphoric acid;PM-ATPase:plasma membrane H+-ATPase;V-ATPase:vacuolar H+-ATPase;V-PPase:vacuolar H+-pyrophosphatas
[1] | 赵可夫, 李法曾, 张福锁. 中国盐生植物[M]. 2版. 北京: 科学出版社, 2013. |
Zhao KF, Li FZ, Zhang FS. Halophytes in China[M]. 2nd ed. Beijing: Science Press, 2013. | |
[2] | 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. |
Wang ZQ, Zhu SQ, Yu RP, et al. Chinese Saline soil[M]. Beijing: China Science Publishing, 1993. | |
[3] |
Munns R. Genes and salt tolerance:bringing them together[J]. New Phytol, 2005, 167(3): 645-663.
doi: 10.1111/j.1469-8137.2005.01487.x pmid: 16101905 |
[4] |
Sudhir P, Murthy SDS. Effects of salt stress on basic processes of photosynthesis[J]. Photosynthetica, 2004, 42(4): 481-486.
doi: 10.1007/S11099-005-0001-6 URL |
[5] | Meng XQ, Zhou J, Sui N. Mechanisms of salt tolerance in halophytes:current understanding and recent advances[J]. Open Life Sci, 2018, 13:149-154. |
[6] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
Qi Q, Ma SR, Xu WD. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Mol Plant Breed, 2020, 18(8): 2741-2746. | |
[7] |
Bejaoui F, Salas JJ, Nouairi I, et al. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. J Plant Physiol, 2016, 198:32-38.
doi: 10.1016/j.jplph.2016.03.018 URL |
[8] | Marschner H. Mineral nutrition of higher plants[M]. 3rd ed. New York: Academic Press, 1986. |
[9] |
Gupta NK, Meena SK, Gupta S, et al. Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance[J]. Photosynthetica, 2002, 40(4): 535-539.
doi: 10.1023/A:1024343817290 URL |
[10] | 陈银华, 朱红林, 沙爱华, 等. 植物耐盐研究进展[J]. 海南大学学报:自然科学版, 2007, 25(1): 79-82. |
Chen YH, Zhu HL, Sha AH, et al. Research advance in plant toler-ance to Sal Inity stress[J]. Nat Sci J Hainan Univ, 2007, 25(1): 79-82. | |
[11] | 张焱梅, 赵晓东, 马梦慈, 等. 混合盐碱胁迫对盐地碱蓬种子萌发的影响[J]. 农业科技与信息, 2020(22): 47-53. |
Zhang YM, Zhao XD, Ma MC, et al. Effects of mixed Saline alkali stress on Seed Germination of Suaeda salsa[J]. Agric Sci Technol Inf, 2020(22): 47-53. | |
[12] |
Flowers TJ, Hajibagheri MA, Clipson NJW. Halophytes[J]. Q Rev Biol, 1986, 61(3): 313-337.
doi: 10.1086/415032 URL |
[13] | 倪细炉, 岳延峰, 田英, 等. 4种盐生植物抗盐能力的综合评价[J]. 中国农学通报, 2010, 26(6): 138-141. |
Ni XL, Yue YF, Tian Y, et al. Comprehensive evaluation of salt-resistance traits in four halophytes[J]. Chin Agric Sci Bull, 2010, 26(6): 138-141. | |
[14] | Breckle SW. Sal Inity tolerance of different halophyte types[M]// Bassam N, Dambroth M, Loughman BC. Genetic aspects of plant mineral nutrition. Dordrecht: Kluwer Academic Publisher, 1990, 167-175. |
[15] |
Rozema J, Schat H. Salt tolerance of halophytes, research questions reviewed in the perspective of Saline agriculture[J]. Environ Exp Bot, 2013, 92:83-95.
doi: 10.1016/j.envexpbot.2012.08.004 URL |
[16] | 王虹, 齐政, 张富春. 不同浓度盐胁迫下盐穗木叶片结构的比较观察[J]. 新疆农业科学, 2016, 53(11): 2098-2105. |
Wang H, Qi Z, Zhang FC. Leaf anatomical structure of Halostachys caspica under different concentrations of salt stress[J]. Xinjiang Agric Sci, 2016, 53(11): 2098-2105. | |
[17] | Gao TP, Guo R, Fang XW, et al. Effects on antioxidant enzyme activities and osmolytes in Halocnemum strobilaceum under salt stress[J]. Sciences in Cold and Arid Regions, 2016, 8(1): 65-71. |
[18] | 刘彧, 丁同楼, 王宝山. 不同自然盐渍生境下盐地碱蓬叶片肉质化研究[J]. 山东师范大学学报:自然科学版, 2006, 21(2): 102-104. |
Liu Y, Ding TL, Wang BS. Study on the leaf succulence of Suaeda salsa under differently natural Saline environments[J]. J Shandong Norm Univ Nat Sci, 2006, 21(2): 102-104. | |
[19] | 苏丹. 盐节木耐盐的生理生化特性及BADH基因克隆研究[D]. 兰州: 甘肃农业大学, 2012. |
Su D. Studies on physiological and biochemical responses of Halocnermum strobilaceum to salt stress and thecloning of its betaine aldehyde dehydrogenase gene[D]. Lanzhou: Gansu Agricultural University, 2012. | |
[20] | 唐晓倩. 盐胁迫下西伯利亚白刺幼苗Na+转运与区隔化生理机制研究[D]. 北京: 中国林业科学研究院, 2019. |
Tang XQ. The physiological mechanism of Na+ transport and compartmentalization in Nitraria sibirica Pall. seedlings under salt stress[D]. Beijing: Chinese Academy of Forestry, 2019. | |
[21] |
Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na +/H + antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050 |
[22] | 陈首业. 利用西伯利亚白刺Na+/H+逆向转运蛋白基因提高转基因杨树耐盐性的研究[D]. 呼和浩特: 内蒙古大学, 2021. |
Chen SY. Study on salt-tolerance improvement of poplar by transformation using Na+/H+ antiporter genes from Nitraria sibirica Pall.[D]. Hohhot: Inner Mongolia University, 2021. | |
[23] |
Dietz KJ, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. J Exp Bot, 2001, 52(363): 1969-1980.
doi: 10.1093/jexbot/52.363.1969 pmid: 11559732 |
[24] | 张会龙, 赵健宇, 武海雯, 等. 植物液泡膜H+-PPase在耐盐性调控中的作用[J]. 植物生理学报, 2022, 58(2): 247-253. |
Zhang HL, Zhao JY, Wu HW, et al. Role of plant vacuolar H+-pyro-phosphatase in salt tolerance[J]. Plant Physiol J, 2022, 58(2): 247-253. | |
[25] |
Chen M, Song J, Wang BS. NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus[J]. Acta Physiol Plant, 2010, 32(1): 27-36.
doi: 10.1007/s11738-009-0371-7 URL |
[26] |
Liu W, Yuan XT, Zhang YY, et al. Effects of salt stress and exogenous Ca2+ on Na+ compartmentalization, ion pump activities of tonoplast and plasma membrane in Nitraria tangutorum Bobr. leaves[J]. Acta Physiol Plant, 2014, 36(8): 2183-2193.
doi: 10.1007/s11738-014-1595-8 URL |
[27] |
Qiu QS, Guo Y, Dietrich MA, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. PNAS, 2002, 99(12): 8436-8441.
doi: 10.1073/pnas.122224699 URL |
[28] |
罗子敬, 孙宇涵, 卢楠, 等. 杨树耐盐机制及转基因研究进展[J]. 核农学报, 2017, 31(3): 482-492.
doi: 10.11869/j.issn.100-8551.2017.03.0482 |
Luo ZJ, Sun YH, Lu N, et al. Research advances on salt-tolerance mechanism and genetic transformation of poplar[J]. J Nucl Agric Sci, 2017, 31(3): 482-492.
doi: 10.11869/j.issn.100-8551.2017.03.0482 |
|
[29] |
Deinlein U, Stephan AB, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6): 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845 |
[30] |
Huang Y, Zhang XX, Li YH, et al. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. J Integr Agric, 2018, 17(12): 2612-2623.
doi: 10.1016/S2095-3119(18)61998-7 URL |
[31] |
Wang WY, Liu YQ, Duan HR, et al. SsHKT1;1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under Saline conditions[J]. Plant Soil, 2020, 449(1/2): 117-131.
doi: 10.1007/s11104-020-04463-x URL |
[32] |
Jha A, Joshi M, Yadav NS, et al. Cloning and characterization of the Sal Icornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress[J]. Mol Biol Rep, 2011, 38(3): 1965-1973.
doi: 10.1007/s11033-010-0318-5 URL |
[33] | Pandey S, Patel MK, Mishra A, et al. In planta transformed cumin(Cuminum cyminum L.)plants, overexpressing the SbNHX1 gene showed enhanced salt endurance[J]. PLoS One, 2016, 11(7): e0159349. |
[34] | Yang XL. Over-expressing Sal Icornia europaea(SeNHX1)gene in tobacco improves tolerance to salt[J]. Afr J Biotechnol, 2011, 10(73): 16452-16460. |
[35] |
银芳柳, 毛晓菲, 曾幼玲. 盐生植物盐爪爪液泡膜钠氢反向运输载体基因(KfNHX1)遗传转化拟南芥的耐盐性鉴定[J]. 新疆农业科学, 2021, 58(3): 565-572.
doi: 10.6048/j.issn.1001-4330.2021.03.020 |
Yin FL, Mao XF, Zeng YL. Salt-tolerant identification of genetic transformation in Arabidopsis with the KfNHX1 gene from the halo-phyte Kalidium foliatum[J]. Xinjiang Agric Sci, 2021, 58(3): 565-572. | |
[36] |
Guan B, Hu YZ, Zeng YL, et al. Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene(HcNHX1)from Halostachys caspica[J]. Mol Biol Rep, 2011, 38(3): 1889-1899.
doi: 10.1007/s11033-010-0307-8 pmid: 20886297 |
[37] | 关波. 盐穗木液泡膜Na+/H+反向运输载体基因的克隆和功能分析[D]. 乌鲁木齐: 新疆大学, 2010. |
Guan B. Molecular cloning and functional analysis of a vacuolar Na+/H+ antiporter gene(HcNHX1) from Halostachys caspica[D]. Urumqi: Xinjiang University, 2010. | |
[38] | 耿新, 楼静, 鄂一岚, 等. 西伯利亚白刺质膜Na+/H+逆向转运蛋白基因NsSOS1的分离及表达分析[J]. 西北植物学报, 2018, 38(8): 1428-1436. |
Geng X, Lou J, E YL, et al. Isolation and expression analysis of plasmalemma Na+/H+ antiporter gene from Nitraria sibirica[J]. Acta Bot Boreali Occidentalia Sin, 2018, 38(8): 1428-1436. | |
[39] | 段慧荣, 王锁民. 盐地碱蓬高亲和性K+转运蛋白基因SsHAK2的克隆与表达模式分析[J]. 草业学报, 2016, 25(2): 114-123. |
Duan HR, Wang SM. Cloning and expression analysis of a high-affinity K+ transporter gene SsHAK2 in Suaeda salsa[J]. Acta Prataculturae Sin, 2016, 25(2): 114-123. | |
[40] |
Qi CH, Chen M, Song J, et al. Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under Sal Inity[J]. Plant Sci, 2009, 176(2): 200-205.
doi: 10.1016/j.plantsci.2008.09.019 URL |
[41] | 张冀, 彭丹, 张丽丽, 等. 盐穗木水通道蛋白基因的克隆与功能鉴定[J]. 基因组学与应用生物学, 2017, 36(11): 4793-4801. |
Zhang J, Peng D, Zhang LL, et al. Cloning and function identification of an aquaporin gene from Halostachys caspica[J]. Genom Appl Biol, 2017, 36(11): 4793-4801. | |
[42] |
Yao MH, Zeng YL, Liu L, et al. Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana[J]. Mol Biol Rep, 2012, 39(8): 7989-7996.
doi: 10.1007/s11033-012-1645-5 URL |
[43] | Hu YZ, Zeng YL, Guan B, et al. Overexpression of a vacuolar H+-pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana[J]. Plant Cell Tissue Organ Cult PCTOC, 2012, 108(1): 63-71. |
[44] | 巩学蕊, 鉴晔, 杨美娟. 藜盐囊泡形态结构及发育研究[J]. 科技风, 2020(29): 164-165. |
Gong XR, Jian Y, Yang MJ. Study on morphological structure and development of SaltBladders of Chenopodium album L.[J]. Technol Wind, 2020(29): 164-165. | |
[45] | 张乐. 盐囊泡在四翅滨藜耐盐性中的作用研究[D]. 兰州: 兰州大学, 2020. |
Zhang(L/Y). The study on the role of salt bladders in the salt tolerance of Atriplex canescens[D]. Lanzhou: Lanzhou University, 2020. | |
[46] |
Dassanayake M, Larkin JC. Making plants break a sweat:the structure, function, and evolution of plant salt glands[J]. Front Plant Sci, 2017, 8:406.
doi: 10.3389/fpls.2017.00406 pmid: 28400779 |
[47] | 薛琼琼, 赵露露, 王云霞, 等. 盐生植物耐盐性研究进展[J]. 中国野生植物资源, 2021, 40(5): 60-65. |
Xue QQ, Zhao LL, Wang YX, et al. Research progress on salt tolerance of halophytes[J]. Chin Wild Plant Resour, 2021, 40(5): 60-65. | |
[48] |
Kuster VC, da Silva LC, Meira RMSA. Anatomical and histochemical evidence of leaf salt glands in Jacquinia armillaris Jacq. (Primulaceae)[J]. Flora, 2020, 262:151493.
doi: 10.1016/j.flora.2019.151493 URL |
[49] | Oi T, Miyake H, Taniguchi M. Salt excretion through the cuticle without disintegration of fine structures in the salt glands of Rhodes grass(Chloris gayana Kunth)[J]. Flora Morphol Distribution Funct Ecol Plants, 2014, 209(3/4): 185-190. |
[50] | 周三, 韩军丽, 赵可夫. 泌盐盐生植物研究进展[J]. 应用与环境生物学报, 2001, 7(5): 496-501. |
Zhou S, Han JL, Zhao KF. Advance of study on recretohalophytes[J]. Chin J Appl Environ Biol, 2001, 7(5): 496-501. | |
[51] | 冯中涛. 囊泡运输在二色补血草盐腺泌盐中的作用研究[D]. 济南: 山东师范大学, 2015. |
Feng ZT. Study on the role of vesicle trafficking in salt secretion of salt glands of Limonium bicolor[D]. Jinan: Shandong Normal University, 2015. | |
[52] |
Lu CX, Yuan F, Guo JR, et al. Current understanding of role of vesicular transport in salt secretion by salt glands in recretohalophytes[J]. Int J Mol Sci, 2021, 22(4): 2203.
doi: 10.3390/ijms22042203 URL |
[53] | Arisz WH, Camphuis IJ, Heikens H, et al. The secretion of the salt glands of Limonium latifolium ktze[J]. Acta Bot Neerlandica, 1955, 4(3): 322-338. |
[54] | Yuan F, Leng BY, Wang BS. Progress in studying salt secretion from the salt glands in recretohalophytes:how do plants secrete salt?[J]. Front Plant Sci, 2016, 7:977. |
[55] |
Semenova GA, Fomina IR, Biel KY. Structural features of the salt glands of the leaf of Distichlis spicata ‘Yensen 4a’(Poaceae)[J]. Protoplasma, 2010, 240:75-82.
doi: 10.1007/s00709-009-0092-1 pmid: 19997947 |
[56] |
Yuan F, Lyu MJA, Leng BY, et al. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation[J]. Plant Cell Environ, 2015, 38(8): 1637-1657.
doi: 10.1111/pce.12514 URL |
[57] |
Ziegler H, Lüttge U. The salt-glands of Limonium Vulgare:II. The localisation of chloride[J]. Planta, 1967, 74(1): 1-17.
doi: 10.1007/BF00385168 pmid: 24549869 |
[58] |
Feng ZT, Sun QJ, Deng YQ, et al. Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor[J]. Acta Physiol Plant, 2014, 36(10): 2729-2741.
doi: 10.1007/s11738-014-1644-3 URL |
[59] |
Wilson H, Mycock D, Weiersbye IM. The salt glands of Tamarix usneoides E. Mey. ex Bunge(South African Salt Cedar)[J]. Int J Phytoremediation, 2017, 19(6): 587-595.
doi: 10.1080/15226514.2016.1244163 URL |
[60] |
Levering CA, Thomson WW. The ultrastructure of the salt gland of Spartina foliosa[J]. Planta, 1971, 97(3): 183-196.
doi: 10.1007/BF00389200 pmid: 24493239 |
[61] |
Shabala S, Bose J, Hedrich R. Salt bladders:do they matter?[J]. Trends Plant Sci, 2014, 19(11): 687-691.
doi: 10.1016/j.tplants.2014.09.001 pmid: 25361704 |
[62] |
Böhm J, Messerer M, Müller HM, et al. Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa[J]. Curr Biol, 2018, 28(19): 3075-3085. e7.
doi: 10.1016/j.cub.2018.08.004 URL |
[63] | 郭欢, 王锁民, 包爱科. 盐生植物四翅滨藜盐囊泡Na+积累分子机制初探[C]. 广州: 中国草学会年会, 2017. |
Guo H, Wang SM, Bao AK. Initial insights into the molecular mechanism of Na+accumulation in halophyte Atriplex canescens vesicles[C]. Guangzhou: A-nnual Meeting of Chinese Grass Society, 2017. | |
[64] |
Barkla BJ, Vera-Estrella R, Raymond C. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins[J]. BMC Plant Biol, 2016, 16(1): 110.
doi: 10.1186/s12870-016-0797-1 URL |
[65] |
Chen J, Xiao Q, Wu FH, et al. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high Sal Inity[J]. Tree Physiol, 2010, 30(12): 1570-1585.
doi: 10.1093/treephys/tpq086 URL |
[66] | 张春蕊, 贾园园, 王艳敏, 等. 刚毛柽柳液泡膜H+-PPase基因的克隆与胁迫下的表达分析[J]. 西北植物学报, 2016, 36(5): 881-887. |
Zhang CR, Jia YY, Wang YM, et al. Cloning and expression analysis of a vacuolar H+-PPase gene from Tamarix hispida[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(5): 881-887. | |
[67] |
Panda A, Rangani J, Parida AK. Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon Sal Icornicum involved in salt tolerance[J]. J Biotechnol, 2020, 324:143-161.
doi: 10.1016/j.jbiotec.2020.10.011 URL |
[68] |
Hamada A, Shono M, Xia T, et al. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini[J]. Plant Mol Biol, 2001, 46(1): 35-42.
doi: 10.1023/a:1010603222673 pmid: 11437248 |
[69] |
Zhang GH, Su Q, An LJ, et al. Characterization and expression of a vacuolar Na+/H+antiporter gene from the monocot halophyte Aeluropus littoralis[J]. Plant Physiol Biochem, 2008, 46(2): 117-126.
doi: 10.1016/j.plaphy.2007.10.022 URL |
[70] | Yuan F, Xu YY, Leng BY, et al. Beneficial effects of salt on halophyte growth:morphology, cells, and genes[J]. Open Life Sci, 2019, 14:191-200. |
[71] |
Dang ZH, Zheng LL, Wang J, et al. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna[J]. BMC Genomics, 2013, 14:29.
doi: 10.1186/1471-2164-14-29 pmid: 23324106 |
[72] |
Yuan F, Lyu MJA, Leng BY, et al. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland[J]. Plant Mol Biol, 2016, 91(3): 241-256.
doi: 10.1007/s11103-016-0460-0 URL |
[73] | 周梦岩, 王涛涛, 陈冉红, 等. 互花米草NHX2基因的克隆与功能鉴定[J]. 西北植物学报, 2019, 39(12): 2093-2099. |
Zhou MY, Wang TT, Chen RH, et al. Cloning and function identification of NHX2 gene from Spartina alterniflora[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(12): 2093-2099. | |
[74] |
Chen M, Song J, Wang BS. NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus[J]. Acta Physiol Plant, 2010, 32(1): 27-36.
doi: 10.1007/s11738-009-0371-7 URL |
[75] |
Tran DQ, Konishi A, Cushman JC, et al. Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L[J]. Plant Prod Sci, 2020, 23(1): 91-102.
doi: 10.1080/1343943X.2019.1647788 |
[76] | 李维焕. 卤代甲烷甲基转移酶基因转化烟草的研究及中华补血草LsNHXs基因的功能研究[D]. 济南: 山东师范大学, 2008. |
Li WH. Transformation of tobacco with MCT gene and the functional analysis of LsNHXs genes from Limonium sinense[D]. Jinan: Shandong Normal University, 2008. | |
[77] | 郭庆水, 徐立新, 袁潜华, 等. 木榄Na+/H+逆向转运蛋白基因的克隆[J]. 热带生物学报, 2010, 1(2): 105-109. |
Guo QS, Xu LX, Yuan QH, et al. Cloning of Na+/H+ antiporter gene from Bruguiera gymnorrhiz(L.)LAM[J]. J Trop Org, 2010, 1(2): 105-109. | |
[78] |
Cosentino C, Fischer-Schliebs E, Bertl A, et al. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum[J]. New Phytol, 2010, 186(3): 669-680.
doi: 10.1111/j.1469-8137.2010.03208.x pmid: 20298477 |
[79] |
Su H, Balderas E, Vera-Estrella R, et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Mol Biol, 2003, 52(5): 967-980.
pmid: 14558658 |
[80] |
Gao CQ, Wang YC, Jiang B, et al. A novel vacuolar membrane H+-ATPase c subunit gene(ThVHAc1)from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J]. Mol Biol Rep, 2011, 38(2): 957-963.
doi: 10.1007/s11033-010-0189-9 URL |
[81] |
Baisakh N, RamanaRao MV, Rajasekaran K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora Löisel[J]. Plant Biotechnol J, 2012, 10(4): 453-464.
doi: 10.1111/j.1467-7652.2012.00678.x URL |
[82] | Khedr AHA, Serag MS, Nemat-Alla MM, et al. A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues[J]. Plant Cell Tissue Organ Cult PCTOC, 2011, 106(2): 191-206. |
[83] |
Khedr AHA, Serag MS, Nemat-Alla MM, et al. Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L[J]. Acta Physiol Plant, 2011, 33(5): 1769-1784.
doi: 10.1007/s11738-011-0714-z URL |
[84] |
Tan WK, Lin QS, Lim TM, et al. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing Saline environment[J]. Plant Cell Environ, 2013, 36(8): 1410-1422.
doi: 10.1111/pce.12068 URL |
[85] | 代金玲, 锡林呼, 张胜利, 等. 沙枣耐盐性研究进展[J]. 世界林业研究, 2019, 32(2): 19-23. |
Dai JL, Xi LH, Zhang SL, et al. Research progress on salt tolerance of Elaeagnus angustifolia[J]. World For Res, 2019, 32(2): 19-23. | |
[86] |
Naidoo G. Salt tolerance of the African haplotype of Phragmites australis(Poaceae)[J]. Afr J Ecol, 2021, 59(3): 724-734.
doi: 10.1111/aje.12876 URL |
[87] | 刘志华, 李建明. 盐生植物的形态解剖结构特征[J]. 衡水学院学报, 2006, 8(1): 86-88. |
Liu ZH, Li JM. The anatomy structure characteristics of halophytes[J]. J Hengshui Univ, 2006, 8(1): 86-88. | |
[88] | 杨海莉. 小花碱茅对渗透胁迫与等渗透势盐胁迫的生理响应[D]. 兰州: 兰州大学, 2019. |
Yang HL. Physiological response of Puccinellia tenuiflora to osmotic and isotonic salt stress[D]. Lanzhou: Lanzhou University, 2019. | |
[89] |
Al Hassan M, Gohari G, Boscaiu M, et al. Anatomical modifications in two juncus species under salt stress conditions[J]. Not Bot Horti Agrobo, 2015, 43(2): 501-506.
doi: 10.15835/nbha43210108 URL |
[90] | 李贵玲. 盐生植物耐盐机制概要及其在改良土壤中的作用[J]. 生物学通报, 2020, 55(9): 7-10. |
Li GL. Research on the anti-salt mechanism and the application of the halophytes[J]. Bull Biol, 2020, 55(9): 7-10. | |
[91] | 陈琳, 张俪文, 刘子亭, 等. 黄河三角洲河滩与潮滩芦苇对盐胁迫的生理生态响应[J]. 生态学报, 2020, 40(6): 2090-2098. |
Chen L, Zhang LW, Liu ZT, et al. Physiological and ecological responses of hetan and chaotan Phragmites australis to salt stress[J]. Acta Ecol Sin, 2020, 40(6): 2090-2098. | |
[92] | 彭彦辉. 膜通道蛋白与植物对渗透胁迫的响应[D]. 上海: 中国科学院研究生院(上海生命科学研究院), 2005. |
Peng YH. Plasma membrane channels and responses to osmotic stress in plant[D]. Shanghai: Graduate School of Chinese Academy of Sciences(Shanghai Institutes for Biological Sciences), 2005. | |
[93] |
Wang CM, Zhang JL, Liu XS, et al. Puccinellia tenuiflora maintains a low Na+ level under Sal Inity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant Cell Environ, 2009, 32(5): 486-496.
doi: 10.1111/j.1365-3040.2009.01942.x URL |
[94] |
Abideen Z, Koyro HW, Huchzermeyer B, et al. Moderate Sal Inity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation[J]. Environ Exp Bot, 2014, 105:70-76.
doi: 10.1016/j.envexpbot.2014.04.009 URL |
[95] | 王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17): 4609-4616. |
Wang SF, Hu YX, Li ZL, et al. Effects of NaCl stress on growth and mineral ion uptake, transportation and distribution of Quercus virginiana[J]. Acta Ecol Sin, 2010, 30(17): 4609-4616. | |
[96] | Liu ZX, Zhu JF, Yang XY, et al. Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress[J]. PLoS One, 2018, 13(1): e0191552. |
[97] |
Pérez-Jiménez M, Pérez-Tornero O. Mutants of Citrus macrophylla rootstock obtained by gamma radiation improve salt resistance through toxic ion exclusion[J]. Plant Physiol Biochem, 2020, 155:494-501.
doi: 10.1016/j.plaphy.2020.06.024 URL |
[98] | Zhang WD, Wang P, Bao Z, et al. SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora[J]. Front Plant Sci, 2017, 8:576. |
[99] | 李静. 小花碱茅响应土壤有益细菌和不同K+、Na+生境的生理研究[D]. 兰州: 兰州大学, 2015. |
Li J. Physiological responses of Puccinellia tenuiflora to beneficial soil bacteria and various K+ and Na+ conditions[D]. Lanzhou: Lanzhou University, 2015. | |
[100] |
杨升, 张华新, 陈秋夏, 等. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4): 489-496.
doi: 10.17521/cjpe.2016.0091 |
Yang S, Zhang HX, Chen QX, et al. Responses of apical ion fluxes to NaCl stress in Elaeagnus angustifolia seedlings[J]. Chin J Plant Ecol, 2017, 41(4): 489-496.
doi: 10.17521/cjpe.2016.0091 URL |
|
[101] |
Porat R, Pavoncello D, Ben-Hayyim G, et al. A heat treatment induced the expression of a Na+/H+ antiport gene(cNHX1)in Citrus fruit[J]. Plant Sci, 2002, 162(6): 957-963.
doi: 10.1016/S0168-9452(02)00041-9 URL |
[102] | Taiz L, Zeiger E. Plant Physiology(Fifth Edition)[M]. New York: Oxford University Press. 2010. |
[103] |
Li JR, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants[J]. J Cell Biochem, 2019, 120(7): 10914-10920.
doi: 10.1002/jcb.28474 URL |
[104] | Fan CX. Genetic mechanisms of salt stress responses in halophytes[J]. Plant Signal Behav, 2020, 15(1): 1704528. |
[105] | 张小萌, 刘宇麒, 张海龙, 等. 囊泡运输参与植物盐胁迫应答调控[J]. 植物生理学报, 2020, 56(5): 905-912. |
Zhang XM, Liu YQ, Zhang HL, et al. Vesicle trafficking is involved in regulation of plant Sal Inity stress response[J]. Plant Physiol J, 2020, 56(5): 905-912. |
[1] | 秦媛, 潘雪玉, 袁志林. 利用PCR技术快速检测根际产ACC脱氨酶细菌[J]. 生物技术通报, 2017, 33(11): 112-122. |
[2] | 付畅 孙玉刚 傅桂荣. 盐生植物耐盐分子机制的研究进展[J]. 生物技术通报, 2013, 0(1): 1-7. |
[3] | 郝东风;兰海燕;陈邦党;张富春;. 新疆盐生植物耐盐基因NHX转化甘蓝型油菜及其耐盐性的初步研究[J]. , 2006, 0(03): 81-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||