生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 276-285.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1292
车永梅(), 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新()
收稿日期:
2022-10-19
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
刘新,女,博士,教授,研究方向:植物-微生物互作;E-mail: liuxin6080@126.com作者简介:
车永梅,女,硕士,副教授,研究方向:植物逆境生理;E-mail: yongmeiche@163.com郭艳苹为共同第一作者
基金资助:
CHE Yong-mei(), GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin()
Received:
2022-10-19
Published:
2023-05-26
Online:
2023-06-08
摘要:
土壤盐渍化是影响农业生产的主要环境因素,合理使用根际促生菌是改良修复盐渍化土壤的有效途径。本研究从东营地区盐渍化土壤中分离筛选到两株耐盐促生菌株C8和B4,经形态学特征、生理生化特性、16S rDNA和gyrB基因序列分析,分别鉴定为氧化微杆菌(Microbacterium oxydans)和嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)。含盐LB培养基上检测结果显示,菌株C8耐6% NaCl,具有解钾、溶有机磷、溶无机磷和分泌生长素的功能;菌株B4耐8% NaCl,具有溶有机磷和分泌生长素的功能。C8和B4单独施用及配施对盐胁迫下番茄的促生作用及机制的试验结果表明,C8和B4单独施用及配施均显著促进盐胁迫下番茄种子萌发和幼苗生长,提高过氧化氢酶(CAT)和过氧化物酶(POD)活性,上调过氧化氢酶基因CAT1和CAT2表达量,增加植株K+含量,降低Na+含量和Na+/K+,上调液泡膜Na+/H+逆向转运蛋白基因NHX1和NHX3的表达量。C8和B4配施具有增效作用。以上结果表明,C8和B4通过调节抗氧化酶及Na+转运蛋白基因表达,提高植株抗氧化能力,维持体内离子稳态,提高植株耐盐性。
车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285.
CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms[J]. Biotechnology Bulletin, 2023, 39(5): 276-285.
基因名称Primer | 引物序列Primer sequence(5'-3') |
---|---|
CAT1-FP | AAATGGGTTGAGTCTTTATCCGA |
CAT1-RP | TCATTGATTTTTCACATTGTAGGCT |
CAT2-FP | TTCTGCCCTTCTATTGTGGTTC |
CAT2-RP | GTGATGAGCACACTTTGGAGC |
SOS1-FP | TGGGAATCGGTTGTAGAC |
SOS1-RP | GCCCAGCAAGTAAAAGCA |
SOS2-FP | GGGAAGTATGAAGTTGGC |
SOS2-RP | TCTCCTCCAGTGACAAAC |
NHX1-FP | GATCACGCCTCTGTGGTTTCC |
NHX1-RP | CAACAGTTCCAATAGCACCAAAA |
NHX3-FP | CTCAAGAGTCACCACCAAGCA |
NHX3-RP | CCAACCAAAACAAGACCCAACA |
表1 定量PCR引物
Table 1 Primers used in quantitative PCR analysis
基因名称Primer | 引物序列Primer sequence(5'-3') |
---|---|
CAT1-FP | AAATGGGTTGAGTCTTTATCCGA |
CAT1-RP | TCATTGATTTTTCACATTGTAGGCT |
CAT2-FP | TTCTGCCCTTCTATTGTGGTTC |
CAT2-RP | GTGATGAGCACACTTTGGAGC |
SOS1-FP | TGGGAATCGGTTGTAGAC |
SOS1-RP | GCCCAGCAAGTAAAAGCA |
SOS2-FP | GGGAAGTATGAAGTTGGC |
SOS2-RP | TCTCCTCCAGTGACAAAC |
NHX1-FP | GATCACGCCTCTGTGGTTTCC |
NHX1-RP | CAACAGTTCCAATAGCACCAAAA |
NHX3-FP | CTCAAGAGTCACCACCAAGCA |
NHX3-RP | CCAACCAAAACAAGACCCAACA |
菌株编号 Strain No. | 可溶钾含量Soluble potassium content/(μg·mL-1) | 无机磷含量Inorganic phosphorus content/(μg·mL-1) | 有机磷含量Organic phosphorus content/(μg·mL-1) | 生长素含量 IAA content/(μg·mL-1) |
---|---|---|---|---|
C8 | 27.37±0.69 | 10.27±1.04 | 26.31±1.19 | 14.62 |
B4 | 0 | 0 | 29.38±2.03 | 11.39 |
表2 菌株C8和B4分解矿物钾、无机磷和有机磷及产生长素能力
Table 2 Abilities of bacterial strain C8 and B4 decomposing mineral potassium, inorganic and organic phosphorus as well as producing auxin
菌株编号 Strain No. | 可溶钾含量Soluble potassium content/(μg·mL-1) | 无机磷含量Inorganic phosphorus content/(μg·mL-1) | 有机磷含量Organic phosphorus content/(μg·mL-1) | 生长素含量 IAA content/(μg·mL-1) |
---|---|---|---|---|
C8 | 27.37±0.69 | 10.27±1.04 | 26.31±1.19 | 14.62 |
B4 | 0 | 0 | 29.38±2.03 | 11.39 |
生理生化实验 Physiological and biochemical experiment | C8 | 生理生化实验 Physiological and biochemical experiment | B4 |
---|---|---|---|
产IAA | + | 产IAA | + |
接触酶 | + | 接触酶 | + |
氧化酶 | - | 氧化酶 | - |
硝酸盐还原 | - | 硝酸盐还原 | + |
L-阿拉伯糖 | - | L-阿拉伯糖 | + |
硫化氢 | - | 硫化氢 | - |
D-木糖 | - | 赖氨酸脱羧酶 | + |
蔗糖 | + | 明胶水解 | + |
葡萄糖 | + | 果糖 | + |
表3 菌株C8和B4的生理生化特性
Table 3 Physiological and biochemical identification of strains C8 and B4
生理生化实验 Physiological and biochemical experiment | C8 | 生理生化实验 Physiological and biochemical experiment | B4 |
---|---|---|---|
产IAA | + | 产IAA | + |
接触酶 | + | 接触酶 | + |
氧化酶 | - | 氧化酶 | - |
硝酸盐还原 | - | 硝酸盐还原 | + |
L-阿拉伯糖 | - | L-阿拉伯糖 | + |
硫化氢 | - | 硫化氢 | - |
D-木糖 | - | 赖氨酸脱羧酶 | + |
蔗糖 | + | 明胶水解 | + |
葡萄糖 | + | 果糖 | + |
Items | CK | C8 | B4 | C8+B4 | NaCl | NaCl+C8 | NaCl+B4 | NaCl+C8+B4 |
---|---|---|---|---|---|---|---|---|
发芽率 Germination rate/% | 91.3±1.01a | 93.4±1.75a | 92.4±2.17a | 94.9±1.95a | 4.7±1.20e | 37.8±1.70c | 29.3±1.64d | 75.1±2.39b |
发芽势 Germination potential/% | 90.2±2.14a | 92.2±2.35a | 91.7±1.07a | 94.3±1.15a | 3.5±1.17e | 34.2±2.05c | 19.2±2.33d | 73.2±1.21b |
表4 Effects of bacterial strains C8和B4 on the germinations of tomato seeds under salt stress
Table 4
Items | CK | C8 | B4 | C8+B4 | NaCl | NaCl+C8 | NaCl+B4 | NaCl+C8+B4 |
---|---|---|---|---|---|---|---|---|
发芽率 Germination rate/% | 91.3±1.01a | 93.4±1.75a | 92.4±2.17a | 94.9±1.95a | 4.7±1.20e | 37.8±1.70c | 29.3±1.64d | 75.1±2.39b |
发芽势 Germination potential/% | 90.2±2.14a | 92.2±2.35a | 91.7±1.07a | 94.3±1.15a | 3.5±1.17e | 34.2±2.05c | 19.2±2.33d | 73.2±1.21b |
图4 菌株C8和B4对盐胁迫下番茄植株生长的影响 不同小写字母代表不同处理间差异显著(P<0.05),下同
Fig. 4 Effects of bacterial strain C8和B4 on the growths of tomato under salt stress The different lowercase letters indicated significant difference(P<0.05)between different treatments, the same below
图7 菌株C8和B4对盐胁迫下番茄植株Na+转运蛋白基因表达的影响
Fig. 7 Effects of bacterial strain C8 and B4 on the relative expressions of Na+ transporter genes of tomato under salt stress
[1] |
Egamberdieva D, Wirth S, Bellingrath-Kimura SD, et al. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils[J]. Front Microbiol, 2019, 10: 2791.
doi: 10.3389/fmicb.2019.02791 pmid: 31921005 |
[2] |
Rahman MM, Mostofa MG, Keya SS, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants[J]. Int J Mol Sci, 2021, 22(19): 10733.
doi: 10.3390/ijms221910733 URL |
[3] |
van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants[J]. Annu Rev Plant Biol, 2020, 71: 403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791 |
[4] |
Park HJ, Kim WY, Yun DJ. A new insight of salt stress signaling in plant[J]. Mol Cells, 2016, 39(6): 447-459.
doi: 10.14348/molcells.2016.0083 pmid: 27239814 |
[5] | 罗达, 吴正保, 史彦江, 等. 盐胁迫对3种平欧杂种榛幼苗叶片解剖结构及离子吸收、运输与分配的影响[J]. 生态学报, 2022, 42(5): 1876-1888. |
Luo D, Wu ZB, Shi YJ, et al. Effects of salt stress on leaf anatomical structure and ion absorption, transportation and distribution of three Ping’ou hybrid hazelnut seedlings[J]. Acta Ecol Sin, 2022, 42(5): 1876-1888. | |
[6] | He F, Sheng M, Tang M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoaca-cia L. under drought stress[J]. Front Plant Sci, 2017, 8: 183. |
[7] |
Purwanto S, Salsabila J. Growth response and yield of saline tolerant rice varieties to bio-fertilizer application at central Java north coastal saline paddy field[J]. IOP Conf Ser: Earth Environ Sci, 2019, 406(1): 012001.
doi: 10.1088/1755-1315/406/1/012001 |
[8] |
Abdelaziz ME, et al. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Sci Hortic, 2019, 256: 108532.
doi: 10.1016/j.scienta.2019.05.059 URL |
[9] |
王桔红, 史生晶, 陈文, 等. 枯草芽孢杆菌和3种放线菌对盐胁迫下鬼针草和鳢肠种子萌发及幼苗生长的影响[J]. 草业学报, 2020, 29(12): 112-120.
doi: 10.11686/cyxb2020068 |
Wang JH, Shi SJ, Chen W, et al. Effects of Bacillus subtilis and three actinomycetes on seed germination and seedling growth of Bidens pilosa and Eclipta prostrata under salt stress[J]. Acta Prataculturae Sin, 2020, 29(12): 112-120. | |
[10] |
Breitkreuz C, Buscot F, Tarkka M, et al. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress[J]. Front Microbiol, 2020, 10: 3109.
doi: 10.3389/fmicb.2019.03109 URL |
[11] |
Rajawat MVS, Singh R, Singh D, et al. Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral[J]. Braz J Microbiol, 2020, 51(2): 751-764.
doi: 10.1007/s42770-019-00210-2 pmid: 31898251 |
[12] |
Jiang HH, Qi PS, Wang T, et al. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut(Arachis hypogaea)under saline soil[J]. Ann Appl Biol, 2019, 174(1): 20-30.
doi: 10.1111/aab.2019.174.issue-1 URL |
[13] |
Nacoon S, Jogloy S, Riddech N, et al. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L[J]. Sci Rep, 2020, 10(1): 4916.
doi: 10.1038/s41598-020-61846-x |
[14] |
Rezakhani L, Motesharezadeh B, Tehrani MM, et al. Effect of silicon and phosphate-solubilizing bacteria on improved phosphorus(P)uptake is not specific to insoluble P-fertilized Sorghum(Sorghum bicolor L.) plants[J]. J Plant Growth Regul, 2020, 39(1): 239-253.
doi: 10.1007/s00344-019-09978-x |
[15] |
Wang JJ, Li RC, Zhang H, et al. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application[J]. BMC Microbiol, 2020, 20: 38.
doi: 10.1186/s12866-020-1708-z pmid: 32085752 |
[16] |
Khan H, et al. Coupling phosphate-solubilizing bacteria(PSB)with inorganic phosphorus fertilizer improves mungbean(Vigna radiata)phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil[J]. Heliyon, 2022, 8(3): e09081.
doi: 10.1016/j.heliyon.2022.e09081 URL |
[17] |
Prittesh P, Avnika P, Kinjal P, et al. Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice(Oryza sativa)under salt-stressed conditions[J]. Arch Microbiol, 2020, 202(9): 2419-2428.
doi: 10.1007/s00203-020-01962-4 pmid: 32591911 |
[18] |
Kumar A, Singh S, Mukherjee A, et al. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress[J]. Microbiol Res, 2021, 242: 126616.
doi: 10.1016/j.micres.2020.126616 URL |
[19] | 杨冬艳, 高晶霞, 桑婷, 等. 溶磷菌和解钾菌对拱棚连作辣椒生长及土壤养分含量的影响[J]. 北方园艺, 2019(6): 1-6. |
Yang DY, Gao JX, Sang T, et al. Effects of phosphorus solubilizing bacteria and potassium-solubilizing bacteria on pepper growth and soil nutrient content in continuous arch shed cultivation[J]. North Hortic, 2019(6): 1-6. | |
[20] |
Yahya M, Islam EU, Rasul M, et al. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Front Microbiol, 2021, 12: 744094.
doi: 10.3389/fmicb.2021.744094 URL |
[21] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual for identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[22] |
刘广超, 叶青, 车永梅, 等. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511 |
Liu GC, Ye Q, Che YM, et al. Screening and identification of high-efficiency phosphate solubilizing bacteria in tobacco rhizosphere and its growth-promoting effects[J]. Biotechnol Bull, 2022, 38(8): 179-187. | |
[23] | 郭玲玲, 吴红艳, 宗玉丽, 等. 土壤中钾细菌的筛选及筛选底物加入量对其数量的影响[J]. 微生物学杂志, 2019, 39(1): 91-94. |
Guo LL, Wu HY, Zong YL, et al. Initial screening of potassium-decomposable bacteria and the effects of the adding amount of substrate on their amount in soil[J]. J Microbiol, 2019, 39(1): 91-94. | |
[24] | 宁德富, 黄必志. 坡地不同利用方式对土壤氮、磷、钾的影响研究[J]. 云南农业大学学报, 2006, 21(1): 61-65. |
Ning DF, Huang BZ. Effcet of different utilization types on soil N, P, K content at sloping land[J]. J Yunnan Agric Univ, 2006, 21(1): 61-65. | |
[25] | 姚拓. 高寒地区燕麦根际联合固氮菌研究II固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报, 2004, 13(3): 85-90. |
Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region II Phosphate-solubilizing power and auxin production[J]. Acta Pratacultural Sci, 2004, 13(3): 85-90. | |
[26] | 陈军, 关欣, 范翠枝, 等. 盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响[J]. 土壤学报, 2021, 58(6): 1598-1609. |
Chen J, Guan X, Fan CZ, et al. Effects of salt stress on form of polyamine and antioxidation in germinating tomato seed[J]. Acta Pedol Sin, 2021, 58(6): 1598-1609. | |
[27] |
Wang K, Zhong M, Wu YH, et al. Overexpression of a Chrysanthe-mum transcription factor gene DgNAC1 improves the salinity tolerance in Chrysanthemum[J]. Plant Cell Rep, 2017, 36(4): 571-581.
doi: 10.1007/s00299-017-2103-6 pmid: 28116501 |
[28] |
Zhu MK, Chen GP, Dong TT, et al. SlDEAD31, a putative DEAD-box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato[J]. PLoS One, 2015, 10(8): e0133849.
doi: 10.1371/journal.pone.0133849 URL |
[29] |
Zhang SY, Fan C, Wang YX, et al. Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil[J]. Can J Microbiol, 2018, 64(12): 968-978.
doi: 10.1139/cjm-2017-0571 pmid: 30148967 |
[30] |
Sharma S, Kulkarni J, Jha B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut[J]. Front Microbiol, 2016, 7: 1600.
pmid: 27790198 |
[31] |
朱娟娟, 马海军, 张琇, 等. 盐胁迫下解钾菌对枸杞幼苗的促生效应[J]. 应用生态学报, 2021, 32(4): 1289-1297.
doi: 10.13287/j.1001-9332.202104.021 |
Zhu JJ, Ma HJ, Zhang X, et al. Effects of potassium-solubilizing bacteria promoting the growth of Lycium barbarum seedlings under salt stress[J]. Chin J Appl Ecol, 2021, 32(4): 1289-1297. | |
[32] | 孙晓莹, 陈意超, 曹沁, 等. 耐盐菌Pseudomonas brassicacearum YZX4的筛选、鉴定及其植物促生特性[J]. 应用与环境生物学报, 2019, 25(5): 1133-1138. |
Sun XY, Chen YC, Cao Q, et al. Isolation and identification of halo-tolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits[J]. Chin J Appl Environ Biol, 2019, 25(5): 1133-1138. | |
[33] | 孙德智, 韩晓日, 彭靖, 等. 外源水杨酸和一氧化氮对盐胁迫番茄幼苗光系统II功能及激发能分配利用的影响[J]. 植物营养与肥料学报, 2018, 24(1): 170-178. |
Sun DZ, Han XR, Peng J, et al. Effects of exogenous salicylic acid and nitric oxide on PS II function and distribution and utilization of excitation energy in tomato seedlings under NaCl stress[J]. J Plant Nutr Fertil, 2018, 24(1): 170-178. | |
[34] |
Liang WJ. Plant salt-tolerance mechanism: a review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291.
doi: 10.1016/j.bbrc.2017.11.043 URL |
[35] |
Li HQ, Jiang XW. Inoculation with plant growth-promoting bacteria(PGPB)improves salt tolerance of maize seedling[J]. Russ J Plant Physiol, 2017, 64(2): 235-241.
doi: 10.1134/S1021443717020078 URL |
[36] | Habib SH, Kausar H, Saud HM. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes[J]. Biomed Res Int, 2016, 2016: 6284547. |
[37] |
Sukweenadhi J, Balusamy SR, Kim YJ, et al. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng[J]. Front Plant Sci, 2018, 9: 813.
doi: 10.3389/fpls.2018.00813 pmid: 30083171 |
[38] |
Shi HZ, Zhu JK. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J]. Plant Mol Biol, 2002, 50(3): 543-550.
doi: 10.1023/A:1019859319617 URL |
[39] |
Wang SS, Shi MY, Zhang Y, et al. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis[J]. Biochem Biophys Res Commun, 2021, 569: 93-99.
doi: 10.1016/j.bbrc.2021.06.085 URL |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[4] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[5] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[6] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[7] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[8] | 陈浩婷, 张玉静, 刘洁, 代泽敏, 刘伟, 石玉, 张毅, 李天来. 低磷胁迫下番茄转录因子WRKY6功能分析[J]. 生物技术通报, 2023, 39(10): 136-147. |
[9] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[10] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[11] | 申恒, 刘思慧, 李跃, 李敬涛, 梁文星. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 2022, 38(6): 74-80. |
[12] | 马馨馨, 许洋, 赵欢欢, 火兆燕, 王树彬, 钟凤林. 番茄4CL基因家族鉴定和氮素处理下的表达分析[J]. 生物技术通报, 2022, 38(4): 163-173. |
[13] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[14] | 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. |
[15] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||